Skip to main content

Advertisement

Log in

Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare global and regional visual field (VF) progression rates and determine clinical factors associated with rapid VF progression in myopic patients with open-angle glaucoma (OAG) with different disc tilt directions.

Methods

The medical records of 182 eyes from 182 myopic OAG patients with progressive VF deterioration during follow-up were analyzed. The rates of change in the mean thresholds of the global and regional VF areas of the horizontal and vertical disc tilt (HDT and VDT) groups were compared using a linear mixed model after controlling for confounding covariates. Clinical factors associated with rapid VF progression in global and regional VF areas were investigated.

Results

The VDT group showed significantly faster VF progression at inferior regional zones than the HDT group (P < 0.05). Based on a multivariate linear mixed model, VDT was associated with faster bi-hemifield VF progression in the GHT map, whereas HDT was associated with faster single-hemifield VF progression.

Conclusions

Myopic OAG eyes show significantly different regional VF progression rates according to disc tilt direction. VDT is an independent predictor of a rapid rate of regional VF progression in both hemifields, whereas HDT predicts rapid regional VF progression in a single hemifield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Doshi A, Kreidl KO, Lombardi L, Sakamoto DK, Singh K (2007) Nonprogressive glaucomatous cupping and visual field abnormalities in young Chinese males. Ophthalmology 114:472–479

    Article  PubMed  Google Scholar 

  2. Sohn SW, Song JS, Kee C (2010) Influence of the extent of myopia on the progression of normal-tension glaucoma. Am J Ophthalmol 149:831–838

    Article  PubMed  Google Scholar 

  3. Park HY, Lee K, Park CK (2012) Optic disc torsion direction predicts the location of glaucomatous damage in normal-tension glaucoma patients with myopia. Ophthalmology 119:1844–1851

    Article  PubMed  Google Scholar 

  4. Lee KS, Lee JR, Kook MS (2014) Optic disc torsion presenting as unilateral glaucomatous-appearing visual field defect in young myopic Korean eyes. Ophthalmology 121:1013–1019

    Article  PubMed  Google Scholar 

  5. Lee JR, Kim S, Lee JY, Back S, Lee KS, Kook MS (2016) Is myopic optic disc appearance a risk factor for rapid progression in medically treated glaucomatous eyes with confirmed visual field progression? J Glaucoma 25:330–337

    Article  PubMed  Google Scholar 

  6. Chihara E, Liu X, Dong J, Takashima Y, Akimoto M, Hangai M et al (1997) Severe myopia as a risk factor for progressive visual field loss in primary open-angle glaucoma. Ophthalmologica 211:66–71

    Article  CAS  PubMed  Google Scholar 

  7. Sakata R, Aihara M, Murata H, Mayama C, Tomidokoro A, Iwase A et al (2013) Contributing factors for progression of visual field loss in normal-tension glaucoma patients with medical treatment. J Glaucoma 22:250–254

    Article  PubMed  Google Scholar 

  8. Lee JY, Sung KR, Han S, Na JH (2015) Effect of myopia on the progression of primary open-angle glaucoma. Invest Ophthalmol Vis Sci 56:1775–1781

    Article  PubMed  Google Scholar 

  9. Kim TW, Kim M, Weinreb RN, Woo SJ, Park KH, Hwang JM (2012) Optic disc change with incipient myopia of childhood. Ophthalmology 119:21–26.e21-23

    Article  PubMed  Google Scholar 

  10. Quigley HA, Anderson DR (1977) Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head. Invest Ophthalmol Vis Sci 16:640–644

    CAS  PubMed  Google Scholar 

  11. Quigley HA, Addicks EM (1981) Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 99:137–143

    Article  CAS  PubMed  Google Scholar 

  12. Quigley HA, Addicks EM, Green WR, Maumenee AE (1981) Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99:635–649

    Article  CAS  PubMed  Google Scholar 

  13. Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR (1983) Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol 95:673–691

    Article  CAS  PubMed  Google Scholar 

  14. Burgoyne CF (2011) A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res 93:120–132

    Article  CAS  PubMed  Google Scholar 

  15. Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL et al (1993) The lens opacities classification system III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol 111:831–836

    Article  PubMed  Google Scholar 

  16. Nicolela MT, Drance SM (1996) Various glaucomatous optic nerve appearances: clinical correlations. Ophthalmology 103:640–649

    Article  CAS  PubMed  Google Scholar 

  17. Wong TY, Klein BE, Klein R, Knudtson M, Lee KE (2003) Refractive errors, intraocular pressure, and glaucoma in a white population. Ophthalmology 110:211–217

    Article  PubMed  Google Scholar 

  18. Jonas JB, Kling F, Grundler AE (1997) Optic disc shape, corneal astigmatism, and amblyopia. Ophthalmology 104:1934–1937

    Article  CAS  PubMed  Google Scholar 

  19. Brito PN, Vieira MP, Falcao MS, Faria OS, Falcao-Reis F (2015) Optical coherence tomography study of peripapillary retinal nerve fiber layer and choroidal thickness in eyes with tilted optic disc. J Glaucoma 24:45–50

    Article  PubMed  Google Scholar 

  20. Lee KM, Lee EJ, Kim TW (2015) Lamina cribrosa configuration in tilted optic discs with different tilt axes: a new hypothesis regarding optic disc tilt and torsion. Invest Ophthalmol Vis Sci 56:2958–2967

    Article  PubMed  Google Scholar 

  21. Leske MC, Heijl A, Hyman L, Bengtsson B (1999) Early manifest glaucoma trial: design and baseline data. Ophthalmology 106:2144–2153

    Article  CAS  PubMed  Google Scholar 

  22. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  23. Shigeeda T, Tomidokoro A, Araie M, Koseki N, Yamamoto S (2002) Long-term follow-up of visual field progression after trabeculectomy in progressive normal-tension glaucoma. Ophthalmology 109:766–770

    Article  PubMed  Google Scholar 

  24. Smith SD, Katz J, Quigley HA (1996) Analysis of progressive change in automated visual fields in glaucoma. Invest Ophthalmol Vis Sci 37:1419–1428

    CAS  PubMed  Google Scholar 

  25. Katz J, Gilbert D, Quigley HA, Sommer A (1997) Estimating progression of visual field loss in glaucoma. Ophthalmology 104:1017–1025

    Article  CAS  PubMed  Google Scholar 

  26. Yamazaki Y, Yoshikawa K, Kunimatsu S, Koseki N, Suzuki Y, Matsumoto S et al (1999) Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph. Jpn J Ophthalmol 43:392–397

    Article  CAS  PubMed  Google Scholar 

  27. Choi JA, Park HY, Shin HY, Park CK (2014) Optic disc tilt direction determines the location of initial glaucomatous damage. Invest Ophthalmol Vis Sci 55:4991–4998

    Article  PubMed  Google Scholar 

  28. Samarawickrama C, Mitchell P, Tong L, Gazzard G, Lim L, Wong TY et al (2011) Myopia-related optic disc and retinal changes in adolescent children from Singapore. Ophthalmology 118:2050–2057

    Article  PubMed  Google Scholar 

  29. Choi JA, Park HY, Shin HY, Park CK (2014) Optic disc characteristics in patients with glaucoma and combined superior and inferior retinal nerve fiber layer defects. JAMA Ophthalmol 132:1068–1075

    Article  PubMed  Google Scholar 

  30. Boden C, Blumenthal EZ, Pascual J, McEwan G, Weinreb RN, Medeiros F et al (2004) Patterns of glaucomatous visual field progression identified by three progression criteria. Am J Ophthalmol 138:1029–1036

    Article  PubMed  Google Scholar 

  31. Leung CK, Yu M, Weinreb RN, Lai G, Xu G, Lam DS (2012) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology 119:1858–1866

    Article  PubMed  Google Scholar 

  32. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA et al (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714–720, discussion 829–730

    Article  PubMed  Google Scholar 

  33. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268–1279

    Article  PubMed  Google Scholar 

  34. Investigators AGIS (2002) The Advanced Glaucoma Intervention Study (AGIS): 12. Baseline risk factors for sustained loss of visual field and visual acuity in patients with advanced glaucoma. Am J Ophthalmol 134:499–512

    Article  Google Scholar 

  35. Choi J, Lee JR, Lee Y, Lee KS, Na JH, Han S et al (2013) Relationship between 24-hour mean ocular perfusion pressure fluctuation and rate of paracentral visual field progression in normal-tension glaucoma. Invest Ophthalmol Vis Sci 54:6150–6157

    Article  PubMed  Google Scholar 

  36. Chen PP, Park RJ (2000) Visual field progression in patients with initially unilateral visual field loss from chronic open-angle glaucoma. Ophthalmology 107:1688–1692

    Article  CAS  PubMed  Google Scholar 

  37. Chen PP (2002) Correlation of visual field progression between eyes in patients with open-angle glaucoma. Ophthalmology 109:2093–2099

    Article  PubMed  Google Scholar 

  38. Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114:1965–1972

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S Kook.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; or expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this article.

Ethical approval

All procedures performed in our study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. As our study is retrospective in nature, formal consent is not required. There is no available identifying information about participants in the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.R., Lee, J., Lee, JE. et al. Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 254, 2267–2276 (2016). https://doi.org/10.1007/s00417-016-3501-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3501-0

Keywords

Navigation