Skip to main content
Log in

The hnRNP A1 homolog Hrb87F/Hrp36 is important for telomere maintenance in Drosophila melanogaster

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Unlike the telomerase-dependent mammalian telomeres, HeT-A, TART, and TAHRE (HTT) retroposon arrays regulate Drosophila telomere length. Cap prevents telomeric associations (TAs) and telomeric fusions (TFs). Our results suggest important roles of Hrb87F in telomeric HTT array and cap maintenance in Drosophila. All chromosome arms, except 2L, in Df(3R)Hrb87F homozygotes (Hrb87F-null) displayed significantly elongated telomeres with amplified HTT arrays and high TAs, all of which resolved without damage. Presence of FLAG-tagged Hrb87F (FLAG-Hrb87F) on cap and subtelomeric regions following hsFLAG-Hrb87F transgene expression in Df(3R)Hrb87F homozygotes suppressed TAs without affecting telomere length. A normal X-chromosome telomere expanded within five generations in Hrb87F-null background and displayed high TAs, but not when hsFLAG-Hrb87F was co-expressed. Tel 1 /Gaiano line or HP1 loss-of-function mutant-derived expanded telomeres carry Hrb87F on cap and HTT arrays while Hrb87F-null telomeres have HP1 and HOAP on caps and expanded HTT arrays. ISWI, seen only on cap on normal telomeres, was abundant on Hrb87F-null expanded HTT arrays. Extended telomeres derived from Tel 1 (Gaiano) or HP1-null mutation background interact with those from Hrb87F-null, since while the end association frequency was negligible in Df(3R)Hrb87F/+ nuclei, it increased significantly in co-presence of Tel 1 or HP1-null-based expanded telomere/s. Together, these suggest complex interactions between members of the proteome of telomere so that absence of any key member leads to telomere expansion and/or enhanced TAs/TFs. HTT expansion in Hrb87F-null condition is not developmental but a germline event presumably because absence of Hrb87F in germline may deregulate HTT retroposition/replication leading to telomere elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alkhatib SG, Landry JW (2011) The nucleosome remodeling factor. FEBS Lett 585:3197–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreyeva EN, Belyaeva ES, Semeshin VF, Pokholkova GV, Zhimulev IF (2005) Three distinct chromatin domains in telomere ends of polytene chromosomes in Drosophila melanogaster Tel mutants. J Cell Sci 118:5465–5477

    Article  CAS  PubMed  Google Scholar 

  • Antao JM, Mason JM, Dejardin J, Kingston RE (2012) Protein landscape at Drosophila melanogaster telomere-associated sequence repeats. Mol Cell Biol 32:2170–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi X, Srikanta D, Fanti L, Pimpinelli S, Badugu R, Kellum R, Rong YS (2005) Drosophila ATM and ATR checkpoint kinases control partially redundant pathways for telomere maintenance. Proc Natl Acad Sci U S A 102:15167–15172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonetti D, Martina M, Falcettoni M, Longhese MP (2014) Telomere-end processing: mechanisms and regulation. Chromosoma 123:57–66

    Article  CAS  Google Scholar 

  • Buchenau P, Arndt-Jovin DJ, Saumweber H (1993) In vivo observation of the puff-specific protein no-on transient A (NONA) in nuclei of Drosophila embryos. J Cell Sci 106:189–199

    CAS  PubMed  Google Scholar 

  • Cenci G, Siriaco G, Raffa GD, Kellum R, Gatti M (2003) The Drosophila HOAP protein is required for telomere capping. Nat Cell Biol 5:82–84

    Article  CAS  PubMed  Google Scholar 

  • Cenci G, Ciapponi L, Gatti M (2005) The mechanism of telomere protection: a comparison between Drosophila and humans. Chromosoma 114:135–145

    Article  CAS  PubMed  Google Scholar 

  • Corona DF, Siriaco G, Armstrong JA, Snarskaya N, McClymont SA, Scott MP, Tamkun JW (2007) ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo. PLoS Biol 5:e232

    Article  PubMed  PubMed Central  Google Scholar 

  • Daneholt B (2001) Packing and delivery of a genetic message. Chromosoma 110:173–185

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Arkhipova IR, Traverse KL, Pardue ML (1997) Promoting in tandem: the promoter for telomere transposon HeT-A and implications for the evolution of retroviral LTRs. Cell 88:647–655

    Article  CAS  PubMed  Google Scholar 

  • Dirscherl SS, Krebs JE (2004) Functional diversity of ISWI complexes. Biochem Cell Biol 82:482–489

    Article  CAS  PubMed  Google Scholar 

  • Fanti L, Giovinazzo G, Berloco M, Pimpinelli S (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 2:527–538

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MG, Miller KM, Cooper JP (2004) Indecent exposure: when telomeres become uncapped. Mol Cell 13:7–18

    Article  CAS  PubMed  Google Scholar 

  • Flynn RL, Centore RC, O'Sullivan RJ, Rai R, Tse A, Songyang Z, Chang S, Karlseder J, Zou L (2011) TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471:532–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford LP, Wright WE, Shay JW (2002) A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene 21:580–583

    Article  CAS  PubMed  Google Scholar 

  • Frydrychova RC, Mason JM (2013) Telomeres: their structure and maintenance. INTECH Open Access Publisher doi:10.5772/51356

  • Gao G, Bi X, Chen J, Srikanta D, Rong YS (2009) Mre11-Rad50-Nbs complex is required to cap telomeres during Drosophila embryogenesis. Proc Natl Acad Sci 106:10728–10733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao G, Walser JC, Beaucher ML, Morciano P, Wesolowska N, Chen J, Rong YS (2010) HipHop interacts with HOAP and HP1 to protect Drosophila telomeres in a sequence-independent manner. Embo J 29:819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George JA, Pardue ML (2003) The promoter of the heterochromatic Drosophila telomeric retrotransposon, HeT-A, is active when moved into euchromatic locations. Genetics 163:625–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han SP, Kassahn KS, Skarshewski A, Ragan MA, Rothnagel JA, Smith R (2010) Functional implications of the emergence of alternative splicing in hnRNP A/B transcripts. RNA 16:1760–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazelett DJ, Bourouis M, Walldorf U, Treisman JE (1998) Decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development 125:3741–3751

    CAS  PubMed  Google Scholar 

  • He Y, Smith R (2009) Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol Life Sci 66:1239–1256

    Article  CAS  PubMed  Google Scholar 

  • Kellum R, Alberts BM (1995) Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J Cell Sci 108:1419–1431

    CAS  PubMed  Google Scholar 

  • Khurana JS, Xu J, Weng Z, Theurkauf WE (2010) Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection. PLoS Genet 6:e1001246. doi:10.1371/journal.pgen.1001246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Branche H, Dupuis S, Ben-David Y, Bani MR, Wellinger RJ, Chabot B (1998) Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nat Genet 19:199–202

    Article  Google Scholar 

  • Lakhotia SC (1974) EM autoradiographic studies on polytene nuclei of Drosophila melanogaster III. Localisation of non-replicating chromatin in the chromocentre heterochromatin. Chromosoma 46:145–159

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC (2011) Forty years of the 93D puff of Drosophila melanogaster. J Biosci 36:399–423

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC, Tapadia MG (1998) Genetic mapping of the amide response element(s) of the hsrω locus of Drosophila melanogaster. Chromosoma 107:127–135

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC, Mallik M, Singh AK, Ray M (2012) The large noncoding hsrω-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma 121:49–70

    Article  CAS  PubMed  Google Scholar 

  • Le PN, Maranon DG, Altina NH, Battaglia CL, Bailey SM (2013) TERRA, hnRNP A1, and DNA-PKcs interactions at human telomeres. Front Oncol 3:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehman R, Tautz D (1994) In situ hybridization to RNA. In Drosophila melanogaster: practical uses in cell and molecular biology. 44:575–598

  • Mallik M (2010) Molecular genetic analysis of roles of the non-coding hsrω gene in development, induced apoptosis and polyQ toxicity in Drosophila melanogaster. Ph. D. Thesis, Banaras Hindu University, Varanasi, India

  • Mallik M, Lakhotia SC (2010) Improved activities of CREB binding protein, heterogeneous nuclear ribonucleoproteins and proteasome following downregulation of noncoding hsrω transcripts help suppress poly(Q) pathogenesis in fly models. Genetics 184:927–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason JM, Frydrychova RC, Biessmann H (2008) Drosophila telomeres: an exception providing new insights. Bioessays 30:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matunis EL, Matunis MJ, Dreyfuss G (1993) Association of individual hnRNP proteins and snRNPs with nascent transcripts. J Cell Biol 121:219–228

    Article  CAS  PubMed  Google Scholar 

  • Melnikova L, Georgiev P (2002) Enhancer of terminal gene conversion, a new mutation in Drosophila melanogaster that induces telomere elongation by gene conversion. Genetics 162:1301–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller HJ (1938) The remaking of chromosomes. Collect Net 8:182–195

    Google Scholar 

  • Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardue ML (2011) In situ hybridization to polytene chromosomes in Drosophila using digoxigenin-labeled probes. Cold Spring Harb Protoc 8:1003–1006

    Google Scholar 

  • Pardue ML, Debaryshe P (2011) Adapting to life at the end of the line: how Drosophila telomeric retrotransposons cope with their job. Mob Genet Elements 1:128–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrini B, Piacentini L, Fanti L, Altieri F, Chichiarelli S, Berloco M, Turano C, Ferraro A, Pimpinelli S (2004) HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol Cell 15:467–476

    Article  CAS  PubMed  Google Scholar 

  • Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A, Altieri F, Pimpinelli S (2009) Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet 5:e1000670

    Article  PubMed  PubMed Central  Google Scholar 

  • Piccolo LL, Corona DF, Onorati MC (2014) Emerging roles for hnRNPs in post-transcriptional regulation: what can we learn from flies? Chromosoma 123:515–527

    Article  CAS  PubMed  Google Scholar 

  • Pinol-Roma S, Dreyfuss G (1993) hnRNP proteins: localization and transport between the nucleus and the cytoplasm. Trends Cell Biol 3:151–155

    Article  CAS  PubMed  Google Scholar 

  • Prasanth KV, Rajendra TK, Lal AK, Lakhotia SC (2000) Omega speckles—a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J Cell Sci 19:3485–3497

    Google Scholar 

  • Pritchard DK, Schubiger G (1996) Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio. Genes Dev 10:1131–1142

    Article  CAS  PubMed  Google Scholar 

  • Raffa GD, Cenci G, Siriaco G, Goldberg ML, Gatti M (2005) The putative Drosophila transcription factor woc is required to prevent telomeric fusions. Mol Cell 20:821–831

    Article  CAS  PubMed  Google Scholar 

  • Raffa GD, Ciapponi L, Cenci G, Gatti M (2011) Terminin: a protein complex that mediates epigenetic maintenance of Drosophila telomeres. Nucleus 2:383–391

    Article  PubMed  Google Scholar 

  • Raffa GD, Cenci G, Ciapponi L, Gatti M (2013) Organization and maintenance of Drosophila telomeres: the roles of terminin and non-terminin proteins. Tsitologiia 55:204–208

    CAS  PubMed  Google Scholar 

  • Rajendra TK, Prasanth KV, Lakhotia SC (2001) Male sterility associated with overexpression of the noncoding hsromega gene in cyst cells of testis of Drosophila melanogaster. J Genet 80:97–110

    Article  CAS  PubMed  Google Scholar 

  • Riddle NC, Shaffer CD, Elgin SCR (2009) A lot about a little dot—lessons learned from Drosophila melanogaster chromosome four. Biochem Cell Biol 87:229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong YS (2008) Telomere capping in Drosophila: dealing with chromosome ends that most resemble DNA breaks. Chromosoma 117:235–242

    Article  CAS  PubMed  Google Scholar 

  • Saumweber H, Symmons P, Kabisch R, Will H, Bonhoeffer F (1980) Monoclonal antibodies against chromosomal proteins of Drosophila melanogaster: establishment of antibody producing cell lines and partial characterization of corresponding antigens. Chromosoma 80:253–275

    Article  CAS  PubMed  Google Scholar 

  • Savitsky M, Kravchuk O, Melnikova L, Georgiev P (2002) Heterochromatin protein 1 is involved in control of telomere elongation in Drosophila melanogaster. Mol Cell Biol 22:3204–3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shareef MM, King C, Damaj M, Badagu R, Huang DW, Kellum R (2001) Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin-induced silencing. Mol Biol Cell 12:1671–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shpiz S and Kalmykova A (2012) Control of telomere length in Drosophila. In Reviews on selected topics of telomere biology doi:10.5772/38160

  • Singh AK, Lakhotia SC (2012) The hnRNP A1 homolog Hrb87F is essential for normal development, female fecundity, omega speckle formation and stress tolerance in Drosophila melanogaster. J Biosci 37:659–678

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Lakhotia SC (2015) Dynamics of hnRNPs and omega speckles in normal and heat shocked live cell nuclei of Drosophila melanogaster. Chromosoma 124:367–383. doi:10.1007/s00412-015-0506-0

    Article  CAS  PubMed  Google Scholar 

  • Siriaco GM, Cenci G, Haoudi A, Champion LE, Zhou C, Gatti M, Mason JM (2002) Telomere elongation (Tel), a new mutation in Drosophila melanogaster that produces long telomeres. Genetics 160:235–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takacs S, Biessmann H, Reddy HM, Mason JM, Torok T (2012) Protein interactions on telomeric retrotransposons in Drosophila. Int J Biol Sci 8:1055–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan H, Qurashi A, Poidevin M, Nelson DL, Li H, Jin P (2012) Retrotransposon activation contributes to fragile X premutation rCGG-mediated neurodegeneration. Hum Mol Genet 21:57–65

    Article  PubMed  Google Scholar 

  • Walter MF, Biessmann H (2004) Expression of the telomeric retrotransposon HeT-A in Drosophila melanogaster is correlated with cell proliferation. Dev Genes Evol 214:211–219

    Article  CAS  PubMed  Google Scholar 

  • Zhang QS, Manche L, Xu RM, Krainer AR (2006) hnRNP A1 associates with telomere ends and stimulates telomerase activity. RNA 12:1116–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Misri S, Shay JW, Pandita TK, Wright WE (2009) Altered states of telomere deprotection and the two-stage mechanism of replicative aging. Mol Cell Biol 29:2390–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zu K, Sikes ML, Haynes SR, Beyer AL (1996) Altered levels of the Drosophila HRB87F/Hrp36 hnRNP protein have limited effects on alternative splicing in vivo. Mol Biol Cell 7:1059–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zu K, Sikes ML, Beyer AL (1998) Separable roles in vivo for the two RNA binding domains of Drosophila hnRNP-A1 homolog. RNA 4:1585–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mary-Lou Pardue for HeT-A clone (pBS 23Zn ORF) and critical suggestions; Dr. G. Cenci for Gaiano-I/Gaiano-I, Gaiano-III/Gaiano-III, and Su(var)205 05 /CyO; Dr. Susan Haynes for Df(3R)Hrb87F; Dr. Ann Beyer for hsFLAG-Hrb87F; and Bloomington Stock Centre for other fly stocks. We thank Dr. H. Saumweber (Berlin, Germany) for P11 and Bj6 antibodies, Dr. D. Corona (Palermo, Italy) for ISWI antibody, and Dr. Cenci and L. Ciapponi (Rome, Italy) for HOAP antibody. Financial support by the Department of Science & Technology, Govt. of India (New Delhi), through the Ramanna Fellowship and the National Facility for Confocal Microscopy grants and by the Board of Research in Nuclear Sciences (Department of Atomic Energy, Govt. of India) through Raja Ramanna Fellowship to SCL is acknowledged. AKS thanks the Council of Scientific & Industrial Research (New Delhi) for Senior Research Fellowship and the Department of Biotechnology, Govt. of India, for Research Associateship.

Compliance with ethical standards

Funding

This study was funded by

Department of Biotechnology, Ministry of Science and Technology, Govt. of India

Department of Atomic Energy, Govt. of India

Department of Science and Technology, Ministry of Science and Technology

Conflict of interest

AKS declares that he has no conflict of interest.

SCL declares that he has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C. Lakhotia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Lakhotia, S.C. The hnRNP A1 homolog Hrb87F/Hrp36 is important for telomere maintenance in Drosophila melanogaster . Chromosoma 125, 373–388 (2016). https://doi.org/10.1007/s00412-015-0540-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-015-0540-y

Keywords

Navigation