, Volume 40, Issue 3, pp 227-235

Temporal and spatial prediction of radiocaesium transfer to food products

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract 

A recently developed semi-mechanistic temporal model is used to predict food product radiocaesium activity concentrations using soil characteristics available from spatial soil databases (exchangeable K, pH, percentage clay and percentage organic matter content). A raster database of soil characteristics, radiocaesium deposition, and crop production data has been developed for England and Wales and used to predict the spatial and temporal pattern of food product radiocaesium activity concentrations (Bq/kg). By combining these predictions with spatial data for agricultural production, an area’s output of radiocaesium can also be estimated, we term this flux (Bq/year per unit area). Model predictions have been compared to observed data for radiocaesium contamination of cow milk in regions of England and Wales which received relatively high levels of fallout from the 1986 Chernobyl accident (Gwynedd and Cumbria). The model accounts for 56% and 80% of the observed variation in cow milk activity concentration for Gwynedd and Cumbria, respectively. Illustrative spatial results are presented and suggest that in terms of food product contamination areas in the North and West of England and Wales are those most vulnerable to radiocaesium deposition. When vulnerability is assessed using flux the spatial pattern is more complex and depends upon food product.

Received: 26 March 2001 / Accepted: 11 July 2001