Contributions to Mineralogy and Petrology

, Volume 131, Issue 2, pp 219–236

Syndeformational recrystallization – dynamic or compositionally induced?

  • Holger Stünitz

DOI: 10.1007/s004100050390

Cite this article as:
Stünitz, H. Contrib Mineral Petrol (1998) 131: 219. doi:10.1007/s004100050390


Dynamic recrystallization in the strict sense of the term is the reconstitution of crystalline material without a change in chemical composition, driven by strain energy in the form of dislocations. Driving potentials additional to internal strain energy may contribute to the recrystallization of naturally deformed minerals, which form solid solutions such as feldspar, amphiboles and pyroxenes, if they change their composition during recrystallization. To estimate the relative importance of these driving potentials, the chemical composition of porphyroclasts and recrystallized grains of plagioclase, clinopyroxene and hornblende have been investigated in samples from a high grade shear zone of the Ivrea Zone, Italy. The plagioclases show two different recrystallization microstructures: bulging recrystallization at grain boundaries and discrete zones of recrystallized grains across porphyroclasts probably involving fracturing. Deformation took place under amphibolite facies conditions on a retrograde P,T-path. Porphyroclast and recrystallized compositions from bulging recrystallization microstructures differ only in their Or-content and yield a ΔG between mean host grain and mean recrystallized grain composition at fixed P,T-conditions of approximately 5 Joules/10−4 m3. Extreme compositional variations yield approximately 60 J/10−4 m3. The increase of free energy due to dislocations calculated for common glide systems in plagioclase are on the order of 100 Joules/10−4 m3 for high values of dislocation densities of 1014 m−2. Thus, the effect of chemically induced driving energies on grain boundary velocity appears small for mean compositions but may be as great as that of deformational energies for larger chemical differences. In the other type of microstructure, porphyroclasts and recrystallized grains in discrete zones differ in their anorthite content. The maximum ΔG induced by the compositional disequilibrium is on the order of 100 J/10−4 m3. This maximum value is of the same magnitude as the ΔG derived from high dislocation densities of 1014 m−2. The resulting combined ΔG is approximately twice as high as for deformational ΔG alone, and heterogeneous nucleation may become a feasible recrystallization mechanism which is evident from the microstructures. The recrystallization mechanism depends on the nature of the driving potential. Grain boundary migration (GBM) and heterogeneous nucleation can release Gibbs free energy induced by compositional disequilibrium, whereas this is not likely for subgrain rotation. Therefore, only GBM and heterogeneous nucleation may link metamorphism and deformation, so that syndeformational recrystallization may represent a transitional process ranging from dynamic recrystallization to metamorphic reaction.

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Holger Stünitz
    • 1
  1. 1.Geologisches Institut, Universität Basel, Bernoullistr. 32, CH-4056 Basel, Switzerland; Fax: 0041/612673613, E-mail: Stuenitz@ubaclu.unibas.chCH