, Volume 123, Issue 3, pp 308-322

Generation of a crust-mantle magma mixture: magma sources and contamination at Cerro Panizos, central Andes

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

 Cerro Panizos, a large caldera in the central Andes Mountains, produced two large dacitic ignimbrites at 7.9 Ma and 6.7 Ma and many andesitic and dacitic lava flows and domes. The older rhyodacitic Cienago Ignimbrite represents the most silicic magma erupted by the system. The younger, much larger volume dacitic Cerro Panizos Ignimbrite is very crystal-rich, containing up to 50% biotite, plagioclase, and quartz crystals in the pumice. It is weakly zoned, with most of the zoning apparent between two main cooling units. Major and most trace elements show little variation through the Cerro Panizos Ignimbrite, but the small range of composition is consistent with typical fractionation trends. Sr, Nd, and Pb isotopic ratios are very “crustal”, with initial 87Sr/86Sr values of 0.711 to 0.715, ɛNd values of –7.5 to –10.2, and nearly invariant Pb isotopic ratios (206Pb/204Pb=18.85, 207Pb/204Pb=15.67, and 208Pb/204Pb=38.80). The limited zonation observed in the Cerro Panizos Ignimbrite is explained by impeded crystal settling due to high crystal content. The magma body was a crystal-liquid mush before ascent to the pre-eruption crustal levels. Crystals formed, but did not separate easily from the magma. Limited fractionation of plagioclase and biotite may have occurred, but the composition was largely controlled by lower crustal MASH processes. AFC modeling shows that the Cerro Panizos magmas resulted from a mixture of roughly equal proportions of late Miocene mantle-derived basalts and melts from ∼1.0 Ga (Grenville age) lower crust. This occurred in a MASH zone in the lower crust, and set the crustal isotopic ratios observed in the Cerro Panizos magmas. The great thickening of the crust beneath the central Andes Mountains sent upper and middle crustal rock types to lower crustal (and deeper) depths, and this explains the “upper crustal” isotopic signatures of the Cerro Panizos rocks. Minor upper crustal assimilation of early Miocene volcanic or subvolcanic rocks produced much of the isotopic variation seen in the system. The nearly invariant high Pb isotopic values and high Pb concentrations indicate that Pb came almost entirely from the crustal source, and was little altered by any subsequent upper crustal assimilation. This Pb signature is isotopically similar to that of the southern Bolivian Tin Belt, suggesting a widely distributed Pb source. The great difference between compositions of Miocene and Quaternary central Andean volcanic rocks is explained by crustal thickening in early Miocene time leading to abundant lower crustal water and associated fluxed melting during the time of the earlier eruptions. The lower crust dried out considerably by Quaternary time, so less crustal component is present.

Received: 22 December 1994 / Accepted: 13 September 1995