Skip to main content
Log in

Fulgurite morphology: a classification scheme and clues to formation

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Fulgurites are natural glasses formed by cloud-to-ground lightning. Several different morphologies of fulgurites have been reported in previous studies, including sand fulgurites, rock fulgurites, and clay fulgurites. Herein, we examine sand, clay, and caliche fulgurites and demonstrate that these differ systematically in their morphology. We further use morphological features to constrain properties of fulgurite-forming lightning strikes. We classify fulgurites into four types of morphologies with an additional minor type. Type I fulgurites are sand fulgurites consisting of thin, glass walls; type II fulgurites are clay fulgurites, consisting of thick, melt rich walls; type III fulgurites are caliche fulgurites, consisting of thick, glass poor walls; and type IV fulgurites are rock fulgurites, consisting of glasses with walls consisting of surrounding, unmelted rock. Fulgurite morphology shows that the energy of fulgurite-forming strikes is between 1 and 30 MJ/m of fulgurite formed, suggests heating rates in the order of 1,000 K/s, and lightning channel thicknesses of about 1 mm diameter. Lightning generates mixtures of at least two components in most fulgurites: an SiO2 glass identified as lechatelierite and a groundmass of more varied composition. In addition to these four primary types, a fifth type—droplet fulgurites—is morphologically dissimilar from the other types, but is compositionally related to the type II or IV fulgurites. Additionally, two fulgurites, both from York County, Pennsylvania, USA, showed the reduction of iron to iron metal with an assortment of Fe–Ti and Si–P compounds with stoichiometry that ranges from nearly pure Fe metal to FeSi. These metal silicides include stoichiometric Fe3Si, Fe2Si, and Fe5Si3, and possibly Fe8Si3 and Fe7Si3, and provide a terrestrial source for these phases, which are typically associated with extraterrestrial material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Version 7, Outokompu Research Oy. The HSC chemical code stands for enthalpy, entropy, and heat capacity. More details on the code can be found at www.hsc-chemistry.net.

References

  • Altaratz O, Levin Z, Yair Y, Ziv B (2003) Lightning activity over land and sea on the eastern coast of the Mediterranean. Month Weath Rev 131:2060–2070

    Article  Google Scholar 

  • Anand M, Taylor LA, Nazarov MA, Shu J, Mao H-K, Hemley RJ (2004) Space weathering on airless planetary bodies: clues from the lunar mineral hapkeite. Proc Natl Acad Sci USA 101:6847–6851

    Article  Google Scholar 

  • Arago M (1821) A perfect glass. Annales Chimie Physique 19:647–648

    Google Scholar 

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Min 83:1127–1131

    Google Scholar 

  • Boccippio DJ, Cummins KL, Christian HJ, Goodman SJ (2000) Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Month Weath Rev 129:108–122

    Article  Google Scholar 

  • Borucki WJ, Chameides WL (1984) Lightning—estimates of the rates of energy dissipation and nitrogen fixation. Rev Geophys Space Phys 22:363–372

    Article  Google Scholar 

  • Butterman WC, Foster WR (1967) Zircon stability and the ZrO2-SiO2 phase diagram. Am Min 52:880–885

    Google Scholar 

  • Cardona MR, Castro KF, Garcia PPC, Hernandez LEO (2006) Mineralogical study of binary iron silicides (Fe–Si system) in a fulgurite from Hidalgo, Mexico. Bol Minerol 17:69–76

    Google Scholar 

  • Carter EA, Hargreaves MD, Kee TP, Pasek MA, Edwards HGM (2010a) A Raman spectroscopic study of a fulgurite. Phil Trans Royal Soc A 368:3087–3097

    Article  Google Scholar 

  • Carter EA, Pasek MA, Smith T, Kee TP, Hines P, Edwards HGM (2010b) Rapid Raman mapping of a fulgurite. Anal Bioanal Chem 397:2647–2658

    Article  Google Scholar 

  • Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J Geophys Res 108:ACL 4–15

    Google Scholar 

  • Consolmagno GJ, Britt DT (1998) The density and porosity of meteorites from the Vatican collection. Meteorit Planet Sci 33:1231–1241

    Article  Google Scholar 

  • Davis GH (2010) Geoarchaeology of the sanctuary of Zeus, Mt. Lykaion, Peloponnesos, Greece. Geol Soc Am Abstr Programs 42:29

  • Domanik K, Kolar S, Musselwhite D, Drake MJ (2004) Accessory silicate mineral assemblages in the Bilanga diogenite: a petrographic study. Meteorit Planet Sci 39:567–579

    Article  Google Scholar 

  • Essene EJ, Fisher DC (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science 234:189–193

    Article  Google Scholar 

  • Frenzel G, Ottemann J (1978) Über Blitzgläser vom Katzenbuckel, Odenwald, und ihre Ähnlichkeit mit Tektiten. Neues Jahrbuch Mineral Monatsh 10:439–446

    Google Scholar 

  • Frenzel G, Stähle V (1982) Fulgurite glass on peridotite from near Frankenstein near Darmstadt. Chem Erde 41:111–119

    Google Scholar 

  • Frenzel G, Stähle V (1984) Über Aluminosilikatglas mit Lechatelierit-Einschlüssen von einer Fulguritröhre des Hahnenstockes (Glarner Freiburg, Schweiz). Chem Erde 43:17–26

    Google Scholar 

  • Frenzel G, Irouschek-Zumthor A, Stähle V (1989) Stoβwellenmetamorphose, Aufschmelzung and Verdampfung bei Fulguritbildung an exponierten Berggipfeln. Chem Erde 49:265–286

    Google Scholar 

  • Garcia-Guinea J, Furio M, Fernandez-Hernan M, Bustillo MA, Crespo-Feo E, Correcher V, Sanchez-Munoz L, Matesanz E (2009) The quartzofeldspathic fulgurite of Bustarviejo (Madrid): glassy matrix and silicon phases. Conf Micro-Raman Spectr Lumin Studies Earth Planet Sci 1473:34–35

    Google Scholar 

  • Gevork’yan VK (1969) The occurrence of natural ferrosilicon in the northern Azov region. Dokl Ahad Nauh S S SR 185:416–418

    Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Min Pet 119:197–212

    Article  Google Scholar 

  • Grapes RH, Muller-Sigmund H (2010) Lightning-strike fusion of gabbro and formation of magnetite-bearing fulgurite, Cornone di Blumone, Adamello, Western Alps, Italy. Miner Petrol 99:67–74

    Article  Google Scholar 

  • Hill RD (1979) A survey of lightning energy estimates. Rev Geophys Space Phys 17:155–164

    Article  Google Scholar 

  • Ingersoll LR, Koepp OA (1924) Thermal diffusivity and conductivity of some soil materials. Phys Rev 24:92–93

    Article  Google Scholar 

  • Ivanov BA, Deutsch A (2002) The phase diagram of CaCO3 in relation to shock compression and decomposition. Phys Earth Planet Int 129:131–143

    Article  Google Scholar 

  • Jones BE, Jones KS, Rambo KJ, Rakov VA, Jerald J, Uman MA (2005) Oxide reduction during triggered-lightning fulgurite formation. J Atmos Solar-Terres Phys 67:423–428

    Article  Google Scholar 

  • Keil K, Berkley JL, Fuchs LH (1982) Suessite, Fe3Si: a new mineral in the North Haig Ureilite. Am Min 67:126–131

    Google Scholar 

  • Krider EP, Dawson GA, Uman MA (1968) Peak power and energy dissipation in a single-stroke lightning flash. J Geophys Res 73:3335

    Article  Google Scholar 

  • Lay EH, Jacobson AR, Holzworth RH, Rodger CJ, Dowden RL (2007) Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network. J Geophys Res 112:D13111 1–9

    Google Scholar 

  • Libby CA (1986) Fulgurite in the Sierra Nevada. Calif Geol 39:262

    Google Scholar 

  • Martin-Crespo T, Lozano-Fernandez RP, Gonzalez-Laguna R (2009) The fulgurite of Terre de Moncorvo (Portugal): description and analysis of the glass. Eur J Miner 21:783–794

    Article  Google Scholar 

  • Navarro-Gonzalez R, Mahan SA, Singhvi AK, Navarro-Aceves R, Rajot J-L, McKay CP, Coll P, Raulin F (2007) Paleoecology reconstruction from trapped gases in a fulgurite from the late Pleistocene of the Libyan desert. Geology 35:171–174

    Article  Google Scholar 

  • O’Keefe J (1984) Natural glass. J Non Crystalline Solids 67:1–17

    Article  Google Scholar 

  • Orville RE (1968) A high-speed time-resolved spectroscopic study of the lightning return stroke: part II. A quantitative analysis. J Atmos Sci 25:839–851

    Article  Google Scholar 

  • Parnell J, Thackrey S, Muirhead D, Wright A (2008) Transient high-temperature processing of silicates in fulgurites as analogues for meteorite and impact melts. Lunar Planet Sci Conf XXXIX:1286

  • Pasek MA (2008) Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci USA 105:853–858

    Article  Google Scholar 

  • Pasek MA, Block K (2009) Lightning reduction of phosphate: implications for phosphorus biogeochemistry. Nat Geosci 2:553–556

    Article  Google Scholar 

  • Pasek MA, Greenberg R (2012) Acidification of Europa’s subsurface ocean as a consequence of oxidant delivery. Astrobiology 12:151–159

    Article  Google Scholar 

  • Pasek MA, Milsom JA, Ciesla FJ, Lauretta DS, Sharp C, Lunine DS (2005) Sulfur chemistry in protoplanetary nebulae with time-varying oxygen abundances. Icarus 175:1–14

    Article  Google Scholar 

  • Pye K (1982) SEM observations on some sand fulgurites from northern Australia. J Sed Res 52:991–998

    Google Scholar 

  • Rakov VA, Uman MA (2003) Lightning: physics and effects. Cambridge University Press, Cambridge

    Google Scholar 

  • Rowan LR, Ahrens TJ (1994) Observations of impact-induced molten metal-silicate partitioning. Earth Planet Sci Lett 122:71–88

    Article  Google Scholar 

  • Schultz PH, Zarate M, Hames B, Koeberl C, Bunch T, Storzer D, Renne P, Wittke J (2004) The quaternary impact record from the Pampas, Argentina. Earth Planet Sci Lett 219:221–238

    Article  Google Scholar 

  • Sheffer AA (2007) Chemical reduction of silicates by meteorite impacts and lightning strikes. Dissertation, University of Arizona

  • Spray JG (1995) Pseudotachylyte controversy: fact or friction. Geology 23:1119–1122

    Article  Google Scholar 

  • Switzer G, Melson WG (1968) Origin and composition of rock fulgurite glass. Smithsonian Contrib Earth Sci 9:47–51

    Google Scholar 

  • Uman MA, Beasley WH, Tiller JA, Lin Y, Krider EP, Weidmann CD, Krehbiel PR, Brook M, Few AA Jr, Bohannon JL, Lennon CL, Poehler HA, Jafferis W, Gulick JR, Nicholson JR (1978) An unusual lightning flash at Kennedy Space Center. Science 201:9–16

    Article  Google Scholar 

  • White WB, Johnson SM, Dantzig GB (1958) Chemical equilibrium in complex mixtures. J Chem Phys 28:751–755

    Article  Google Scholar 

  • Williams E, Chan T, Boccippio D (2004) Islands as miniature continents: another look at the land-ocean lightning contrast. J Geophys Res 109:D16206 1–5

    Google Scholar 

  • Yu Z (1984) Two new minerals gupeiite and xifengite in cosmic dusts from Yanshan. Acta Petro Miner Anal 3:231–238

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from NASA Exobiology and Evolutionary biology (grants NNX07AU08G and NNX10AT30G). The authors thank Dolores Hill for help with sample preparation, Zachary Atlas for help with microprobe and for reviewing the manuscript, Brent Owens for reviewing the manuscript, and Michael Joseph for assistance with microprobe of the Greensboro NC fulgurite. The manuscript benefitted significantly from comments from Chris Ballhaus, Tomas Martín-Crespo, and Kevin Jones.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Pasek.

Additional information

Communicated by C. Ballhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasek, M.A., Block, K. & Pasek, V. Fulgurite morphology: a classification scheme and clues to formation. Contrib Mineral Petrol 164, 477–492 (2012). https://doi.org/10.1007/s00410-012-0753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0753-5

Keywords

Navigation