Skip to main content
Log in

Distribution of brine in grain boundaries during static recrystallization in wet, synthetic halite: insight from broad ion beam sectioning and SEM observation at cryogenic temperature

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We report observations from room temperature static recrystallization experiments (annealing times from minutes to year) of cold-pressed, synthetic, coarse-grained, wet sodium chloride, prepared by broad ion beam polishing and SEM observations at cryogenic temperature to observe directly the brine in grain boundaries. At all stages of annealing, the majority of the brine in the samples is connected in 2D sections along grain boundaries. Another part of the brine is in isolated brine inclusion arrays along grain boundaries and in brine inclusions left behind by migrating brine-filled grain boundaries. Most of these boundaries are mobile because the aggregate is coarsening. We interpret that the boundaries without observable brine films (<15 nm) and brine inclusion arrays are healed and immobile. Evolution of grain boundary structure involves three major processes. First, dissolution on one side of the grain boundary and precipitation on the other side, resulting in grain boundary migration. Second, the development of facets formed by low-index crystallographic planes of the grains bounding the grain boundary brine. When both sides of a grain boundary are able to develop low-index facets in a thick brine film, the resulting impingement boundary is interpreted to be immobile and may prevent the new grain from migrating into a deformed neighbor. When one side of a faceted boundary consists of low-index crystallographic planes and the other side passively follows this faceted shape along irrational surfaces, the boundary is mobile. Third, the healing of grain boundary brine films, producing solid–solid grain boundaries without resolvable brine films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Beauprêtre S, Zigone D, Voisin C, Renard F (2010) On the healing rate of a reactive interface. EGU2010-8599

  • Bérest P, Brouard B, Hévin G (2010) A 12-year cavern abandonment test. In: EPJ Web of Conferences, vol 6, pp 22003–22010

  • Brantley SL, Evans B, Hickman SH, Crerar DA (1990) Healing of microcracks in quartz: implications for fluid flow. Geology 18:136

    Article  Google Scholar 

  • De Meer S, Spiers CJ, Peach CJ, Watanabe T (2002) Diffusive properties of fluid-filled grain boundaries measured electrically during active pressure solution. Earth Planet Sci Lett 200:147–157

    Article  Google Scholar 

  • De Meer S, Spiers C, Nakashima S (2005) Structure and diffusive properties of fluid-filled grain boundaries: an in situ study using infrared (micro) spectroscopy. Earth Planet Sci Lett 232:403–414

    Article  Google Scholar 

  • De Winter AMD, Schneijdenberg C, Lebbink M, Lich B, Verkleij A, Drury M, Humbel B (2009) Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging. J Microsc 233:372–383

    Article  Google Scholar 

  • Den Brok BD, Morel J, Zahid M (2002) In situ experimental study of roughness development at a stressed solid/fluid interface, vol 200. Geological Society, London, Special Publications, pp 73–83. doi:10.1144/GSL.SP.2001.200.01.05

  • Desbois G, Urai JL, Burkhardt C, Drury MR, Hayles M, Humbel B (2008) Cryogenic vitrification and 3D serial sectioning using high resolution cryo-FIB SEM technology for brine-filled grain boundaries in halite: first results. Geofluids 8:60–72

    Article  Google Scholar 

  • Desbois G, Urai JL, Kukla PA (2009) Morphology of the pore space in claystones—evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. eEarth 4:15–22

    Article  Google Scholar 

  • Desbois G, Zavada P, Schleder Z, Urai JL (2010) Deformation and recrystallization mechanisms in naturally deformed salt fountain: microstructural evidence for a switch in deformation mechanisms with increased availability of meteoric water and decreased grain size (Qum Kuh, central Iran). J Struct Geol 32(4):580–594

    Article  Google Scholar 

  • Drury M, Urai J (1990) Deformation-related recrystallization processes. Tectonophysics 172:235–253

    Article  Google Scholar 

  • Fujiwara K, Tsumura S, Tokairin M, Kutsukake K, Usami N, Uda S, Nakajima K (2009) Growth behavior of faceted Si crystals at grain boundary formation. J Cryst Growth 312(1):19–23

    Google Scholar 

  • Ghoussoub J, Leroy YM (2001) Solid–fluid phase transformation within grain boundaries during compaction by pressure solution. J Mech Phys Solids 49:2385–2430

    Article  Google Scholar 

  • Gratier J (1993) Experimental pressure solution of Halite by an indenter technique. Geophys Res Lett 20:1647

    Article  Google Scholar 

  • Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. I Acta Crystallogr 8:49–52

    Google Scholar 

  • Heidug WK, Leroy YM (1994) Geometrical evolution of stressed and curved solid–fluid phase boundaries 1. Transformation kinetics. J Geophys Res 99:505–515

    Article  Google Scholar 

  • Hickman SH, Evans B (1991) Experimental pressure solution in halite: the effect of grain/interphase boundary structure. J Geol Soc 148:549–560

    Article  Google Scholar 

  • Hickman SH, Evans B (1995) Kinetics of pressure solution at halite-silica interfaces and intergranular clay films. J Geophys Res 100:13113

    Article  Google Scholar 

  • Hippert J, Egydio-Silva M (1996) New polygonal grains formed by dissolution–redeposition in quartz mylonite. J Struct Geol 18:1345–1352

    Article  Google Scholar 

  • Holness M, Lewis S (1997) The structure of the halite-brine interface inferred from pressure and temperature variations of equilibrium dihedral angles in the halite-H2O–CO2 system. Geochim Cosmochim Acta 61:795–804

    Article  Google Scholar 

  • Holzer L, Cantoni M (2011) Review of FIB-tomography. In: Utke I, Moshkalev S, Russell Ph (eds) Nanofabrication using focused ion and electron beams: principles and applications. Oxford University Press, NY. ISBN 9780199734214

  • Holzer L, Gasser P, Kaech A, Wegmann M, Zingg A, Wepf R, Muench B (2007) Cryo-FIB-nanotomography for quantitative analysis of particle structures in cement suspensions. J Microsc 227:216–228

    Article  Google Scholar 

  • Holzer L, Münch B, Rizzi M, Wepf R, Marschall P, Graule T (2010) 3D-microstructure analysis of hydrated bentonite with cryo-stabilized pore water. Appl Clay Sci 47:330–342

    Article  Google Scholar 

  • Hudec M, Jackson M (2007) Terra infirma: understanding salt tectonics. Earth-Sci Rev 82:1–28

    Article  Google Scholar 

  • Humphreys J, Hatherly M (1996) Recrystallization and related annealing phenomena, Reprinted with corr. ed. Pergamon, Oxford [u.a.]

  • Langer M (1993) Use of solution-mined caverns in salt for oil and gas storage and toxic waste disposal in Germany. Eng Geol 35:183–190

    Article  Google Scholar 

  • Lehner F (1995) A model for intergranular pressure solution in open systems. Tectonophysics 245:153–170

    Article  Google Scholar 

  • Littke R, Bayer U, Gajewski D, Nelskamp S (2008) Dynamics of complex intracontinental Basins—The Central European Basin System. Springer, Berlin–Heidelberg, ISBN: 978-3-540-85084-7

  • Lohkaemper THK, Jordan G, Costamagna R, Stoeckhert B, Schmahl WW (2003) Phase shift interference microscope study of dissolution-precipitation processes of nonhydrostatically stressed halite crystals in solution. Contrib Mineral Petrol 146:263–274

    Article  Google Scholar 

  • Loucks RG, Reed RM, Ruppel SC, Jarvie DM (2009) Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J Sediment Res 79:848–861

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, Berlin, New York

    Google Scholar 

  • Pincus H (1985) Underground storage of oil and gas in salt deposits and other non-hard rocks. Earth-Sci Rev 22:238–239

    Article  Google Scholar 

  • Renard F, Bernard D, Thibault X, Boller E (2004) Synchrotron 3D microtomography of halite aggregates during experimental pressure solution creep and evolution of the permeability. Geophys Res Lett 31:L07607. doi:10.1029/2004GL019605

  • Schenk O, Urai JL (2004) Microstructural evolution and grain boundary structure during static recrystallization in synthetic polycrystals of Sodium Chloride containing saturated brine. Contrib Mineral Petrol 146:671–682

    Article  Google Scholar 

  • Schenk O, Urai JL (2005) The migration of fluid-filled grain boundaries in recrystallizing synthetic bischofite: first results of in situ high-pressure, high-temperature deformation experiments in transmitted light. J Metamorph Geol 23:695–709

    Article  Google Scholar 

  • Schenk O, Urai JL, Piazolo S (2006) Structure of grain boundaries in wet, synthetic polycrystalline, statically recrystallizing halite—evidence from cryo-SEM observations. Geofluids 6:93–104

    Article  Google Scholar 

  • Schléder Z, Urai JL (2005) Microstructural evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, The Netherlands. Int J Earth Sci (Geol Rundsch) 94:941–955

    Google Scholar 

  • Schmatz J, Schenk O, Urai JL (2010) The interaction of migrating grain boundaries and fluid inclusions in rock analogues: the effect of wetting angle and fluid inclusion velocity. Contrib Mineral Petrol. 162(1):193–208. doi:10.1007/s00410-010-0590-3

  • Schoenherr J, Urai J, Kukla PA, Littke R, Schleder Z, Larroque J-M, Newall M, Al-Abry N, Al-Siyabi H, Rawahi Z (2007) Limits to the sealing capacity of rocksalt: a case study of the Infra-Cambrian Ara Salt from the South Oman Salt Basin. AAPG Bull 91(11):1541–1557

    Article  Google Scholar 

  • Spiers CJ, Schutjens PMTM (1999) Intergranular pressure solution in Nacl: grain-to-grain contact experiments under the optical microscope. Oil Gas Sci Technol Rev IFP 54:729–750

    Article  Google Scholar 

  • Spiers CJ, Urai JL, Lister GS, Boland JN, Zwart HJ (1986) The influence of fluid rock interaction on the rheology of salt rock and on ionic transport in the salt. Nuclear Science and Technology EUR 10399 EN, Luxembourg, p 131

  • Spiers CJ, Brzesowskry RH, Peach CJ, Liezenberg JL, Zwart HJ (1990) Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. In: Knipe RJ, Ruitter EH (eds) Deformation mechanisms, rheology, and tectonics, vol 54. Geological Society, London, Special Publication, pp 215–227. doi:10.1144/GSL.SP.1990.054.01.21

  • Staudtmeister K, Rokahr R (1997) Rock mechanical design of storage caverns for natural gas in rock salt mass. Int J Rock Mech Min Sci 34:300.e1–300.e13

    Article  Google Scholar 

  • Urai JL, Means WD, Lister GS (1986a) Dynamic recrystallization of minerals. In: Hobbs, B. E., Heard, H. C. (Eds.), Mineral and Rock Deformation: Laboratory Studies - The Paterson Volume. American Geophysical Union, Geophysical Monograph 36:161–199

    Google Scholar 

  • Urai JL, Spiers CJ, Zwart HJ, Lister GS (1986b) Weakening of rock salt by water during long-term creep. Nature 324:554–557

    Article  Google Scholar 

  • Urai JL, Schléder Z, Spiers C, Kukla PA (2008) Flow and transport properties of salt rocks. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: The Central European Basin System. Springer, Berlin, Heidelberg 277-290.978-3-540-85084-7

    Google Scholar 

  • Van Noort R, Spiers CJ, Peach CJ (2006) Effects of orientation on the diffusive properties of fluid-filled grain boundaries during pressure solution. Phys Chem Miner 34:95–112

    Article  Google Scholar 

  • Van Noort R, Visser HJM, Spiers CJ (2008) Influence of grain boundary structure on dissolution controlled pressure solution and retarding effects of grain boundary healing. J Geophys Res 113:B03201. doi:10.1029/2007JB005223

  • Visser HJM (1999) Mass transfer processes in crystalline aggregates containing a fluid phase. PhD thesis, Universiteit Utrecht, 244 pp

  • Watanabe T, Peach CJ (2002) Electrical impedance measurement of plastically deforming halite rocks at 125°C and 50 MPa. J Geophys Res (Solid Earth) 107:B1. doi:10.1029/2001JB000204

Download references

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft for supporting our project and funding the BIB-cryo-SEM instrument (Project UR 64/9-2). We are also grateful to Dr. Georg Koschek, Dr. Christian Jaeger and Mr. Hans-Rolf Schreiber from Carl Zeiss NTS GmbH, and Dr. Sebastian van Offern from Klocke Nanotechnik GmbH for their work to help us to develop the BIB-cryo-SEM instrument. We thank Prof. Dr. F. Michael Meyer from Institut für Mineralogie und Lagerstättenlehre at RWTH Aachen University for hosting the instrument; and Franz Grümmer from the Geological Institute at RWTH Aachen University for his help with installing the instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Desbois.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (DOC 4643 kb)

Online Resource 2 (DOC 23672 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desbois, G., Urai, J.L., Kukla, P.A. et al. Distribution of brine in grain boundaries during static recrystallization in wet, synthetic halite: insight from broad ion beam sectioning and SEM observation at cryogenic temperature. Contrib Mineral Petrol 163, 19–31 (2012). https://doi.org/10.1007/s00410-011-0656-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0656-x

Keywords

Navigation