Skip to main content
Log in

In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications

Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Rutile is a common accessory mineral that occurs in a wide spectrum of metamorphic rocks, such as in blueschists, eclogites, and granulites and as one of the most stable detrital heavy minerals in sedimentary rocks. The advent of rutile trace element thermometry has generated increased interest in a better understanding of rutile formation. This study documents important analytical advances in in situ LA-ICP-MS U/Pb geochronology of rutile: (1) Matrix matching, necessary for robust in situ dating is fulfilled by calibrating and testing several rutile standards (R10, R19, WH-1), including the presentation of new TIMS ages for the rutile standard R19 (489.5 ± 0.9 Ma; errors always stated as 2 s). (2) Initial common lead correction is routinely applied via 208Pb, which is possible due to extremely low Th/U ratios (usually <0.003) in most rutiles. Employing a 213 nm Nd:YAG laser coupled to a quadrupole ICP-MS and using R10 as a primary standard, rutile U/Pb concordia ages for the two other rutile standards (493 ± 10 Ma for R19; 2640 ± 50 Ma for WH-1) and four rutile-bearing metamorphic rocks (181 ± 4 Ma for Ivrea metapelitic granulite; 339 ± 7 Ma for Saidenbach coesite eclogite; 386 ± 8 Ma for Fjortoft UHP metapelite; 606 ± 12 Ma for Andrelandia metepelitic granulite) always agree within 2% with the reported TIMS ages and other dating studies from the same localities. The power of in situ U/Pb rutile dating is illustrated by comparing ages of detrital rutile and zircon from a recent sediment from the Christie Domain of the Gawler Craton, Australia. While the U/Pb age spectrum from zircons show several pronounced peaks that are correlated with magmatic episodes, rutile U/Pb ages are marked by only one pronounced peak (at ca 1,675 Ma) interpreted to represent cooling ages of this part of the craton. Rutile thermometry of the same detrital grains indicates former granulite-facies conditions. The methods outlined in this paper should find wide application in studies that require age information of single spots, e.g., provenance studies, single-crystal zoning and texturally controlled dating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Allen CM, Campbell IH (2007) Spot dating of detrital rutile by LA-Q-ICP-MS: a powerful provenance tool. In: Geological society of america abstracts with programs, vol 39, p 527

  • Belousova EA, Reid A, Schwarz MP, Griffin WL, Fairclough M (2006) Crustal evolution of the Gawler Craton, South Australia: application of the TerraneChron technique to detrital zircon from modern stream sediments. South Australia, Department of Primary Industries and Resources, Report Book, 2006/4

  • Belousova EA, Reid AJ, Griffin WL, O’Reilly SY (2009) Rejuvenation vs recycling of Archean crust in the Gawler Craton, South Australia: evidence from U-Pb and Hf-isotopes in detrital zircon. Lithos 113:570–582

    Google Scholar 

  • Birch WD, Barron LM, Magee C, Sutherland FL (2007) Gold- and diamond bearing White Hills Gravel, St. Arnaud district, Victoria: age and provenance based on U-Pb dating of zircon and rutile. Aust J Earth Sci 54:609–628

    Article  Google Scholar 

  • Carrapa B, DeCelles PG, Reiners PW, Gehrels GE, Sudo M (2009) Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the Central Andes: a multiphase tectonothermal history. Geology 37:407–410

    Article  Google Scholar 

  • Cherniak DJ (2000) Pb diffusion in rutile. Contrib Mineral Petrol 139:198–207

    Article  Google Scholar 

  • Cherniak DJ, Manchester J, Watson EB (2007) Zr and Hf diffusion in rutile. Earth Planet Sci Lett 261:267–279

    Article  Google Scholar 

  • Clark DJ, Hensen BJ, Kinny PD (2000) Geochronological constraints for a two-stage history of the Albany-Fraser Orogen, Western Australia. Precamb Res 102:155–183

    Article  Google Scholar 

  • Cox RA, Indares A, Dunning GR (2002) Temperature-time paths in the high-P Manicouagan Imbricate zone, eastern Grenville Province: evidence for two metamorphic events. Precamb Res 117:225–250

    Article  Google Scholar 

  • Davis WJ (1997) U-Pb zircon and rutile ages from granulite xenoliths in the Slave province: evidence for mafic magmatism in the lower crust coincident with Proterozoic dike swarms. Geology 25:343–346

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussmann J (1992) An introduction to the rock-forming minerals. Longman, Essex

    Google Scholar 

  • Dobrzhinetskaya LF, Eide EA, Larsen RB, Sturt BA, Tronnes RG, Smith DC, Taylor WR, Posukhova TV (1995) Microdiamond in high-grade metamorphic rocks of the Western Gneiss Region, Norway. Geology 23:597–600

    Article  Google Scholar 

  • Dunkl I, von Eynatten H (2009) Anchizonal-hydrothermal growth and (U-Th)/He dating of rutile crystals in the sediments of Hawasina window, Oman. Geochim Cosmochim Acta 73:A314

    Google Scholar 

  • Dunkl I, Mikes T, Simon K, von Eynatten H (2008) Brief introduction to the Windows program Pepita: data visualization and reduction, outlier rejection, calculation of trace element ratios and concentrations from AL-ICP-MS data. In: Sylvester P (ed) Laser ablation-ICP-MS in the earth sciences, vol 40, pp 334–340

  • Eggins SM, Kinsley LPJ, Shelley JMG (1998) Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci 127:278–286

    Article  Google Scholar 

  • Ewing TA, Rubatto D, Eggins SM, Hermann J (2011) In situ measurement of hafnium isotopes in rutile by LA-MC-ICP-MS: protocol and applications. Chem Geol 281:72–82

    Google Scholar 

  • Foden J, Elburg MA, Dougherty-Page J, Burtt A (2006) The timing and duration of the Delamerian orogeny: correlation with the Ross Orogen and implications for Gondwana assembly. J Geol 114:189–210

    Article  Google Scholar 

  • Force ER (1980) The provenance of rutile. J Sediment Petrol 50:485–488

    Google Scholar 

  • Graeser S, Hunziker JC (1968) Rb-Sr und Pb-isotopen-bestimmungen an gesteinen und Mineralien der Ivrea Zone. Schweiz Mineral Petrogr Mitt 48:189–204

    Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Harley SL, Kelly NM, Möller A (2007) Zircon behaviour and the thermal histories of mountain chains. Elements 3:25–30

    Article  Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162

    Article  Google Scholar 

  • Horn I, Rudnick RL, McDonough WF (2000) Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U-Pb geochronology. Chem Geol 167:405–425

    Article  Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18:423–439

    Article  Google Scholar 

  • Hubert JF (1962) A zircon-tourmaline-rutile maturity index and the interdependance of the composition of heavy mineral assemblages with the growth composition and texture of sandstones. J Sediment Petrol 32:440–450

    Google Scholar 

  • Jackson SE (2008) Calibration strategies for elemental analysis by LA-ICP-MS. In: Sylvester P (ed) Laser ablation-ICP-MS in the earth sciences, 40:169–188

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jacob DE (2006) High sensitivity analysis of trace element-poor geological reference glasses by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Geostand Geoanalyt Res 30:221–235

    Article  Google Scholar 

  • Jochum KP, Stoll B (2008) Reference materials for elemental and isotopic analyses by LA-(MC)-ICP-MS: successes and outstanding needs. In: Sylvester P (ed) Laser ablation-ICP-MS in the earth sciences, 40:147–168

  • Jochum KP, Seufert HM, Spettel B, Palme H (1986) The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochim Cosmochim Acta 50:1173–1183

    Article  Google Scholar 

  • Kelly NM, Hinton RW, Harley SL, Appleby SK (2008) New SIMS U-Pb zircon ages from the Langavat Belt, South Harris, NW Scotland: implications for the Lewisian terrane model. J Geol Soc 165:967–981

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Paterson BA, Kinny PD (2006) Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439:580–583

    Article  Google Scholar 

  • Klemme S, Prowatke S, Hametner K, Günther D (2005) Partitioning of trace elements between rutile and silicate melts: implications for subduction zones. Geochim Cosmochim Acta 69:2361–2371

    Article  Google Scholar 

  • Kooijman E, Mezger K, Berndt J (2010) Constraints on the U-Pb sytematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth Planet Sci Lett 293:321–330

    Article  Google Scholar 

  • Krogh TE (1973) A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494

    Article  Google Scholar 

  • Krogh T, Robinson P, Terry MP (2003) Precise U-Pb zircon ages define 18 and 19 m.y. subduction to uplift intervals in the Averoya-Nordoyane area, Western Gneiss Region. In: Eide EA (ed) NGU-report 2003-055, pp 71–72

  • Kröner A, Willner AP (1998) Time of formation and peak of Variscan HP-HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany. Contrib Mineral Petrol 132:1–20

    Article  Google Scholar 

  • Kylander-Clark ARC, Hacker BR, Mattinson JM (2008) Slow exhumation of UHP terranes: titanite and rutile ages of the Western Gneiss Region, Norway. Earth Planet Sci Lett 272:531–540

    Article  Google Scholar 

  • Ludwig KR (2003) Isoplot/Ex 3.00. A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication, 4

  • Luvizotto GL, Zack T (2009) Nb and Zr behavior in rutile during high-grade metamorphism and retrogression: an example from the Ivrea–Verbano Zone. Chem Geol 261:303–317

    Article  Google Scholar 

  • Luvizotto GL, Zack T, Meyer HP, Ludwig T, Triebold S, Kronz A, Münker C, Stockli DF, Prowatke S, Klemme S, Jacob DE, von Eynatten H (2009) Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem Geol 261:346–369

    Article  Google Scholar 

  • Marvin UB (1971) Lunar niobian rutile. Earth Planet Sci Lett 11:7–9

    Article  Google Scholar 

  • Massonne HJ, Czambor A (2007) Geochemical signatures of Variscan eclogites from the Saxonian Erzgebirge, central Europe. Chemie der Erde 67:69–83

    Article  Google Scholar 

  • Massonne HJ, Kennedy A, Nasdala L, Theye T (2007) Dating of zircon and monazite from diamondiferous quartzofeldspathic rocks of the Saxonian Erzgebirge—hints at burial and exhumation velocities. Mineral Mag 71:407–425

    Article  Google Scholar 

  • Mezger K, Hanson GN, Bohlen SR (1989) High-precision U-Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth Planet Sci Lett 96:106–118

    Article  Google Scholar 

  • Möller A, Mezger K, Schenk V (2000) U-Pb dating of metamorphic minerals: Pan-African metamorphism and prolonged slow cooling of high pressure granulites in Tanzania, East Africa. Precamb Res 104:123–146

    Article  Google Scholar 

  • Möller A, O’Brien PJ, Kennedy A, Kröner A (2002) Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. J Metamorph Geol 20:727–740

    Article  Google Scholar 

  • Möller A, O’Brien PJ, Kennedy A, Kröner A (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In: Vance D, Müller W, Villa IM (eds) Geochronology: linking the isotopic record with petrology and textures, vol 220. Geological Society of London, Special Publication, pp 65–81

  • Moraes R, Peternel R, Trouw RAJ, Brown M, Piccoli P (2003) P-T path of a kyanite-K-feldspar (HP) granulite of the Andrelandia sequence. Brasilia Fold Belt, Brazil, GSA Annual Meeting

  • Morton AC, Hallsworth C (1994) Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment Geol 90:241–256

    Article  Google Scholar 

  • Okay N, Zack T, Okay AI, Barth M (in press) Sinistral transport along the Trans-European Suture Zone: detrital zircon-rutile geochronology and sandstone petrography from the Carboniferous flysch of the Pontides. Geol Mag. doi:10.1017/S0016756810000804

  • Parrish RR (1987) An improved micro-capsule for zircon dissolution in U-Pb geochronology. Chem Geol 66:99–102

    Google Scholar 

  • Reno BL, Piccoli P, Brown M, Kobayashi K, Usui T, Nakamura E, Trouw RAJ (2006) Geochronologic constraints on the tectonic evolution of the Southern Brasilia Fold Belt, Brazil. In: Brown M, Piccoli P (eds) Granulites and granulites, Brasilia, p 72

  • Romer RL (2001) Lead incorporation during crystal growth and the misinterpretation of geochronological data from low-238U/204Pb metamorphic minerals. Terra Nova 13:258–263

    Article  Google Scholar 

  • Root DB, Hacker BR, Gans PB, Ducea MN, Eide EA, Mosenfelder JL (2005) Discrete ultrahigh-pressure domains in the Western Gneiss Region, Norway: implications for formation and exhumation. J Metamorph Geol 23:45–61

    Article  Google Scholar 

  • Schaltegger U, Schneider JL, Maurin JC, Corfu F (1996) Precise U-Pb chronometry of 345–340 Ma old magmatism related to syn-convergence extension in the Southern Vosges (Central Variscan Belt). Earth Planet Sci Lett 144:403–419

    Article  Google Scholar 

  • Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134:186–201

    Article  Google Scholar 

  • Schmitz MD, Bowring SA (2003) Constraints on the thermal evolution of continental lithosphere from U-Pb accessory mineral thermochronometry of lower crustal xenoliths, southern Africa. Contrib Mineral Petrol 144:592–618

    Article  Google Scholar 

  • Schmitz MD, Schoene B (2007) Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem Geophys Geosyst 8:Q08006. doi:10.1029/2006GC001492

  • Schoene B, Bowring SA (2007) Determining accurate temperature-time paths from U-Pb thermochronology: an example from the Kaapvaal craton, southern Africa. Geochim Cosmochim Acta 71:165–185

    Article  Google Scholar 

  • Siegesmund S, Layer P, Dunkl I, Vollbrecht A, Steeken A, Wemmer K, Ahrendt H (2008) Exhumation and deformation history of the lower crustal section of the Valstrona di Omegna in the Ivrea Zone, southern Alps. In: Siegesmund S, Fügenschuh B, Froitzheim N (eds) Tectonic aspects of the alpine-dinaride-carpathian system. Geol Soc Lond (Special Publications) 298:45–68

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a 2-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Stendal H, Toteu SF, Frei R, Penaye J, Njel UO, Bassahak J, Nni J, Kankeu B, Ngako V, Hell JV (2006) Derivation of detrital rutile in the Yaounde region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa). J Afr Earth Sci 44:443–458

    Article  Google Scholar 

  • Stockli DF, Wolfe MR, Blackburn TJ, Zack T, Walker JD, Luvizotto GL (2007) He diffusion and (U-Th)/He thermochronometry of rutile. American Geophysical Union, Fall Meeting, pp #V23C-1548

  • Storey CD, Jeffries TE, Smith M (2006) Common lead-corrected laser ablation ICP-MS U-Pb systematics and geochronology of titanite. Chem Geol 227:37–52

    Article  Google Scholar 

  • Storey CD, Smith MP, Jeffries TE (2007) In situ LA-ICP-MS U-Pb dating of metavolcanics of Norrbotten, Sweden: records of extended geological histories in complex titanite grains. Chem Geol 240:163–181

    Article  Google Scholar 

  • Sylvester PJ, Ghaderi M (1997) Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma- mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chem Geol 141:49–65

    Article  Google Scholar 

  • Terry MP, Robinson P, Hamilton MA, Jercinovic MJ (2000) Monazite geochronology of UHP and HP metamorphism, deformation, and exhumation, Nordoyane, Western Gneiss Region, Norway. Am Mineral 85:1651–1664

    Google Scholar 

  • Thirlwall MF, Walder AJ (1995) In situ hafnium isotope ratio analysis of zircon by inductively-coupled plasma multiple collector mass-spectrometry. Chem Geol 122:241–247

    Article  Google Scholar 

  • Tomkins AG, Dunlap WJ, Mavrogenes JA (2004) Geochronological constraints on the polymetamorphic evolution of the granulite-hosted Challenger gold deposit: implications for assembly of the northwest Gawler Craton. Aust J Earth Sci 51:1–14

    Article  Google Scholar 

  • Tomkins HS, Powell R, Ellis DJ (2007) The pressure dependence of the zirconium-in-rutile thermometer. J Metamorph Geol 25:703–713

    Article  Google Scholar 

  • Triebold S, Von Eynatten H, Luvizotto G, Zack T (2007) Deducing source rock lithology from detrital rutile geochemistry: an example from the Erzgebirge, Germany. Chem Geol 244:421–436

    Article  Google Scholar 

  • Turner SP, Kelley SP, VandenBerg AHM, Foden JD, Sandiford M, Flottmann T (1996) Source of the Lachlan fold belt flysch linked to convective removal of the lithospheric mantle and rapid exhumation of the Delamerian-Ross fold belt. Geology 24:941–944

    Article  Google Scholar 

  • Vavra G, Schaltegger U (1999) Post-granulite facies monazite growth and rejuvenation during permian to lower jurassic thermal and fluid events in the Ivrea zone (Southern Alps). Contrib Mineral Petrol 134:405–414

    Article  Google Scholar 

  • Vermeesch P (2004) How many grains are needed for provenance study? Earth Planet Sci Lett 224:441–451

    Google Scholar 

  • Vry JK, Baker JA (2006) LA-MC-ICPMS Pb-Pb dating of rutile from slowly cooled granulites: confirmation of the high closure temperature for Pb diffusion in rutile. Geochim Cosmochim Acta 70:1807–1820

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Article  Google Scholar 

  • Werner O, Lippolt HJ (2000) White mica 40Ar/39Ar ages of Erzgebirge metamorphic rocks: simulating the chronological results by a model of Variscan crustal imbrication. In: Orogenic processes: quantification and modelling in the Variscan Belt. Spec. Pub. Geol. Soc. London, 179:323–336

  • Zack T, Luvizotto GL (2006) Application of rutile thermometry to eclogites. Mineral Petrol 88:69–85

    Article  Google Scholar 

  • Zack T, Kronz A, Foley SF, Rivers T (2002) Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem Geol 184:97–122

    Article  Google Scholar 

  • Zack T, Moraes R, Kronz A (2004a) Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib Mineral Petrol 148:471–488

    Article  Google Scholar 

  • Zack T, von Eynatten H, Kronz A (2004b) Rutile geochemistry and its potential use in quantitative provenance studies. Sediment Geol 171:37–58

    Article  Google Scholar 

  • Zack T, Luvizotto GL, Barth M, Stockli DF (2007) U/Pb rutile dating in granulite-facies rocks by LA-ICP-MS. Eos Trans. AGU, vol 88. 52, Fall Meet. Suppl. Abstract V34C-05

  • Zingg A (1980) Regional metamorphism in the Ivrea Zone (Southern Alps, N-Italy): field and microscopic investigations. Schweiz Mineral Petrogr Mitt 60:153–179

    Google Scholar 

Download references

Acknowledgments

We wish to thank Dirk Frei, Paul Hoskin and Simon Jackson for detailed and constructive reviews. We would also like to thank Dorrit Jacob, Klemens Link, Jasper Berndt-Gerdes, Ellen Kooijman, and Klaus Mezger for discussions. Andreas Möller is thanked for providing grains of WH-1. This project was supported by grants from the DFG (Za285/7-1) and by NERC funding (for the Edinburgh Ion Microprobe Facility). This is contribution 704 from the ARC National Key Centre for the Geochemical Evolution and Metallogeny of Continents (http://www.es.mq.edu.au/GEMOC/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Zack.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 255 kb)

Supplementary material 2 (XLS 38.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zack, T., Stockli, D.F., Luvizotto, G.L. et al. In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contrib Mineral Petrol 162, 515–530 (2011). https://doi.org/10.1007/s00410-011-0609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0609-4

Keywords

Navigation