Skip to main content
Log in

In situ Re–Os isotopic analysis of platinum-group minerals from the Mayarí-Cristal ophiolitic massif (Mayarí-Baracoa Ophiolitic Belt, eastern Cuba): implications for the origin of Os-isotope heterogeneities in podiform chromitites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Chromitite pods in the Mayarí-Cristal ophiolitic massif (eastern Cuba) were formed in the Late Cretaceous when island arc tholeiites and MORB-like back-arc basin basalts reacted with residual mantle peridotites and generated chromite-rich bodies enclosed in dunite envelopes. Platinum-group minerals (PGM) in the podiform chromitites exhibit important Os-isotope heterogeneities at the kilometric, hand sample and thin section scales. 187Os/188Os calculated at the time of chromitite crystallization (~90 Ma) ranges between 0.1185 and 0.1295 (γOs = −7.1 to +1.6, relative to enstatite chondrite), and all but one PGM have subchondritic 187Os/188Os. Grains in a single hand sample have initial 187Os/188Os that spans from 0.1185 to 0.1274, and in one thin section it varies between 0.1185 and 0.1232 in two PGM included in chromite which are only several millimeters apart. As the Os budget of a single micrometric grain derives from a mantle region that was at least several m3 in size, the variable Os isotopic composition of PGM in the Mayarí-Cristal chromitites probably reflects the heterogeneity of their mantle sources on the 10–100 m scale. Our results show that this heterogeneity was not erased by pooling and mingling of individual melt batches during chromitite crystallization but was transferred to the ore deposits on mineral scale. The distribution of the Os model ages calculated for PGM shows four main peaks, at ~100, 500, 750 and 1,000 Ma. These variable Os model ages reflect the presence of different depleted domains in the oceanic (Pacific-related) upper mantle of the Greater Antilles paleo-subduction zone. The concordance between the age of crystallization of the Mayarí-Cristal chromitites and the most recent peak of the Os model age distribution in PGM supports that Os in several grains was derived from fertile domains of the upper mantle, whose bulk Os isotopic composition is best approximated by that of enstatite chondrites; on the other hand, most PGM are crystallized by melts that tapped highly refractory mantle sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed AH, Arai S (2002) Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contrib Mineral Petrol 143:263–278

    Article  Google Scholar 

  • Ahmed AH, Hanghøj K, Kelemen PB, Hart SR, Arai S (2006) Osmium isotope systematics of the Proterozoic and Phanerozoic ophiolitic chromitites: In situ ion probe analysis of primary Os-rich PGM. Earth Planet Sci Lett 245:777–791

    Article  Google Scholar 

  • Alard O, Griffin WL, Lorand J-P, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407:891–894

    Article  Google Scholar 

  • Alard O, Griffin WL, Pearson NJ, Lorand J-P, O’Reilly SY (2002) New insights into the Re-Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides. Earth Planet Sci Lett 203:651–663

    Article  Google Scholar 

  • Alard O, Luguet A, Pearson NJ, Griffin WL, Lorand J-P, Gannoun A, Burton KV, O’Reilly SY (2005) In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature 436:1005–1008

    Article  Google Scholar 

  • Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag 56:173–184

    Article  Google Scholar 

  • Arai S, Yurimoto H (1994) Podiform Chromitites of the Tari-Misaka Ultramafic Complex, Southwestern Japan, as Mantle-Melt Interaction Products. Econ Geol 89:1279–1288

    Article  Google Scholar 

  • Augé T (1987) Chromite deposits in the northern Oman ophiolite. Mineral Depos 22:1–10

    Article  Google Scholar 

  • Ballhaus C (1998) Origin of podiform chromite deposits by magma mingling. Earth Planet Sci Lett 156:185–193

    Article  Google Scholar 

  • Ballhaus C, Sylvester P (2000) Noble metal enrichment processes in the Merensky Reef, Bushveld Complex. J Petrol 41:545–561

    Article  Google Scholar 

  • Ballhaus C, Bockrath C, Wohlgemuth-Ueberwasser C, Laurenz V, Berndt J (2006) Fractionation of the noble metals by physical processes. Contrib Mineral Petrol 152:667–684

    Article  Google Scholar 

  • Bloomer SH, Hawkins JW (1987) Petrology and geochemistry of boninite series volcanic rocks from the Mariana trench. Contrib Mineral Petrol 97:361–377

    Article  Google Scholar 

  • Brandon AD, Creaser RA, Shirey SB, Carlson RW (1996) Osmium recycling in subduction zones. Science 272:861–864

    Article  Google Scholar 

  • Brandon AD, Walker RJ, Morgan JW, Norman MD, Prichard HM (1998) Coupled 186Os and 187Os evidence for core-mantle interaction. Science 280:1570–1573

    Article  Google Scholar 

  • Brandon AD, Snow JE, Walker RJ, Morgan JW, Mock TD (2000) 190Pt-186Os and 187Re-187Os systematics of abyssal peridotites. Earth Planet Sci Lett 177:319–335

    Article  Google Scholar 

  • Brandon AD, Walker RJ, Puchtel IS (2006) Platinum–osmium isotope evolution of the Earth’s mantle: constraints from chondrites and Os-rich alloys. Geochim Cosmochim Acta 70:2093–2103

    Article  Google Scholar 

  • Büchl A, Brügmann G, Batanova VG, Münker C, Hofmann AW (2002) Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos Ophiolite. Earth Planet Sci Lett 204:385–402

    Article  Google Scholar 

  • Büchl A, Brügmann G, Batanova VG (2004a) Formation of podiform chromitite deposits: implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chem Geol 208:217–232

    Article  Google Scholar 

  • Büchl A, Brügmann G, Batanova VG, Hofmann AW (2004b) Os mobilization during melt percolation: the evolution of Os isotope heterogeneities in the mantle sequence of the Troodos ophiolite, Cyprus. Geochim Cosmochim Acta 68:3397–3408

    Article  Google Scholar 

  • Burton KW, Schiano P, Birck J-L, Allègre CJ (1999) Osmium isotope disequilibrium between mantle minerals in a spinel-lherzolite. Earth Planet Sci Lett 172:311–322

    Article  Google Scholar 

  • Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the subduction factory, AGU Geophys Monogr 138, pp 23–45

  • Falloon TJ, Danyushevsky LV (2000) Melting of Refractory mantle at 1.5–2 and 2.5 GPa under anhydrous condition and H2O undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 41:257–283

    Article  Google Scholar 

  • Finnigan CS, Brenan JM, Mungall JE, McDonough WF (2008) Experiments and models bearing on the role of chromite as a collector of platinum group minerals by local reduction. J Petrol 49:1647–1665

    Article  Google Scholar 

  • Frei R, Gervilla F, Meibom A, Proenza JA, Garrido CJ (2006) Os isotope heterogeneity of the upper mantle: evidence from the Mayarí–Baracoa ophiolite belt in eastern Cuba. Earth Planet Sci Lett 241:466–476

    Article  Google Scholar 

  • Garuti G, Zaccarini F, Economou-Eliopoulos M (1999) Paragenesis and composition of laurite from chromitites of Othrys (Greece): implications for Os-Ru fractionation in ophiolitic upper mantle of the Balkan Peninsula. Mineral Depos 34:312–319

    Article  Google Scholar 

  • Gervilla F, Proenza JA, Frei R, González-Jiménez JM, Garrido CJ, Melgarejo JC, Meibom A, Díaz-Martínez R, Lavaut W (2005) Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contrib Mineral Petrol 150:589–607

    Article  Google Scholar 

  • Ghosh B, Pal T, Bhattacharya A, Das D (2009) Petrogenetic implications of ophiolitic chromite from Rutland Island, Andaman—a boninitic parentage in supra-subduction setting. Mineral Petrol 96:59–70

    Article  Google Scholar 

  • González-Jiménez JM, Proenza JA, Gervilla F, Blanco-Moreno JA, Ruiz-Sánchez R (2009a) Small-scale mobility of platinum-group elements during serpentinization: evidence from the distribution of platinum-group minerals in chromitites from the Sagua de Tánamo district (Mayarí-Baracoa Ophiolite Belt, eastern Cuba). Proceedings of the 10th Bienn SGA Meet, Townsville

  • González-Jiménez JM, Gervilla F, Proenza JA, Kerestedjian T, Augé T, Bailly L (2009b) Zoning of laurite (RuS2)–erlichmanite (OsS2): implications for the origin of PGM in ophiolite chromitites. Europ J Mineral 21:419–432

    Article  Google Scholar 

  • Griffin WL, Spetius ZV, Pearson NJ, O’Reilly SY (2002) In situ Re–Os analysis of sulfide inclusions in kimberlitic olivine: New constraints on depletion events in the Siberian lithospheric mantle. Geochem Geophys Geosyst 3(11). doi:10.1029/2001GC000287

  • Griffin WL, Graham S, O’Reilly SY, Pearson NJ (2004) Lithosphere evolution beneath the Kaapvaal Craton: Re–Os systematics of sulfides in mantle-derived peridotites. Chem Geol 208:89–118

    Article  Google Scholar 

  • Grove TL, Till CB, Lev E, Chatterjee N, Médard E (2009) Kinematic variables and water transport control the formation and location of arc volcanoes. Nature 459:694–697

    Article  Google Scholar 

  • Harvey J, Gannoun A, Burton KW, Rogers NW, Alard O, Parkinson IJ (2006) Ancient melt extraction from the oceanic upper mantle revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet Sci Lett 244:606–621

    Article  Google Scholar 

  • Hattori K, Hart SR (1991) Osmium-isotope ratios of platinum group mineral associated with ultramafic inclusions: Os isotopic evolution of the oceanic mantle. Earth Planet Sci Lett 107:499–514

    Article  Google Scholar 

  • Hirata T, Hattori M, Tanaka T (1998) In situ osmium isotope ratio analyses of iridosmines by laser ablation-multiple collector-inductively coupled plasma mass spectrometry. Chem Geol 144:269–280

    Article  Google Scholar 

  • Iturralde-Vinent MA (1994) Cuban Geology: a new plate tectonic synthesis. J Petrol Geol 17:39–69

    Article  Google Scholar 

  • Iturralde-Vinent MA (1996) Introduction to Cuban Geology and Geophysics. In: Iturralde-Vinent MA (ed) Ofiolitas y Arcos Volcánicos de Cuba, IUGS-UNESCO Proj 364 Caribbean Ophiolites and Volcanic Arcs, Spec Contrib 1, pp 3–35

  • Iturralde-Vinent MA, Díaz-Otero C, Rodríguez-Vega A, Díaz-Martínez R (2006) Tectonic implications of paleontologic dating of Cretaceous-Danian sections of Eastern Cuba. Geol Acta 4:89–102

    Google Scholar 

  • Jolly WT, Lidiak EG, Dickin AP (2008) The case for persistent southwest-dipping Cretaceous convergence in the northeast Antilles: geochemistry, melting models, and tectonic implications. Geol Soc Am Bull 120:1036–1052

    Article  Google Scholar 

  • Kelemen PB (1990) Reaction between Ultramafic rock and fractionating basaltic Magma I. Phase relations, the origin of Calc-alkaline Magma Series, and the formation of discordant dunite. J Petrol 31:51–98

    Google Scholar 

  • Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375(6534):747–753

    Article  Google Scholar 

  • Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick H (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos Trans R Soc Lond Ser A 355:283–318

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Reiners PW (2004) Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim Cosmochim Acta 68:345–360

    Article  Google Scholar 

  • Lago B, Rabinowicz M, Nicolas A (1982) Podiform chromite ore bodies: a genetic model. J Petrol 23:103–125

    Google Scholar 

  • Lázaro C, García-Casco A, Rojas Agramonte Y, Kröner A, Neubauer F, Iturralde-Vinent MA (2009) Fifty-five-million-year history of oceanic subduction and exhumation at the northern edge of the Caribbean plate (Sierra del Convento mélange, Cuba). J metam Geol 27:19–40

    Article  Google Scholar 

  • Leblanc M, Ceuleneer G (1992) Chromite crystallization in a multicellular magma flow: evidence from a chromitite dike in the Oman ophiolite. Lithos 27:231–257

    Article  Google Scholar 

  • Liu C-Z, Snow JE, Hellebrand E, Brügmann G, von der Handt A, Büchl A, Hofmann AW (2008) Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452:311–316

    Article  Google Scholar 

  • Lorand J-P, Alard O (2001) Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France). Geochim Cosmochim Acta 65:2789–2806

    Article  Google Scholar 

  • Lorand J-P, Luguet A, Alard O, Bezos A, Meisel T (2008) Abundance and distribution of platinum-group elements in orogenic lherzolites; a case study in a Fontete Rouge lherzolite (French Pyrénées). Chem Geol 248:174–194

    Article  Google Scholar 

  • Ludwig K (2000) Isoplot/Ex version 2.3: a geochronological toolkit for Microsoft excel. Berkeley Geochron Cent Spec Publ 1a, Berkeley, USA

  • Luguet A, Alard O, Lorand J-P, Pearson NJ, Ryan C, O’Reilly SY (2001) Laser-ablation microprobe (LAM)-ICPMS unravels the highly siderophile element geochemistry of the oceanic mantle. Earth Planet Sci Lett 189:285–294

    Article  Google Scholar 

  • Luguet A, Lorand J-P, Alard O, Cottin J-Y (2004) A multi-technique study of platinum group element systematic in some Ligurian ophiolitic peridotites, Italy. Chem Geol 208:175–194

    Article  Google Scholar 

  • Malitch KN (2004) Osmium isotope constraints on contrasting sources and prolonged melting in the Proterozoic upper mantle: evidence from ophiolitic Ru–Os sulfides and Ru–Os–Ir alloys. Chem Geol 208:157–173

    Article  Google Scholar 

  • Malitch KN, Junk SA, Thalhammer OAR, Melcher F, Knauf VV, Pernicka E, Stumpfl EF (2003) Laurite and ruarsite from podiform chromitites at Kraubath and Hochgrössen, Austria: new insights from osmium isotopes. Can Mineral 41:331–352

    Article  Google Scholar 

  • Marchesi C, Garrido CJ, Godard M, Proenza JA, Gervilla F, Blanco-Moreno J (2006) Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contrib Mineral Petrol 151:717–736

    Article  Google Scholar 

  • Marchesi C, Garrido CJ, Bosch D, Proenza JA, Gervilla F, Monié P, Rodríguez-Vega A (2007) Geochemistry of Cretaceous Magmatism in Eastern Cuba: recycling of North American continental sediments and implications for subduction polarity in the Greater Antilles Paleo-arc. J Petrol 48:1813–1840

    Article  Google Scholar 

  • Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromitite deposits. Earth Planet Sci Lett 203:235–243

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Meibom A, Anderson DL (2003) The statistical upper mantle assemblage. Earth Planet Sci Lett 217:123–139

    Article  Google Scholar 

  • Meibom A, Frei R (2002) Evidence for an ancient osmium isotopic reservoir in earth. Science 296:516–518

    Article  Google Scholar 

  • Meibom A, Sleep NH, Chamberlain CP, Coleman RG, Frei R, Hren MT, Wooden JL (2002) Re–Os isotopic evidence for long-lived heterogeneity and equilibration processes in the Earth’s upper mantle. Nature 419:705–708

    Article  Google Scholar 

  • Meibom A, Frei R, Sleep NH (2004) Osmium isotopic compositions of Os-rich platinum group element alloys from the Klamath and Siskiyou Mountains. J Geophys Res 109:B02203. doi:10.1029/2003JB002602

    Article  Google Scholar 

  • Melcher F, Grum W, Simon G, Thalhammer TV, Stumpfl EF (1997) Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J Petrol 38:1419–1458

    Article  Google Scholar 

  • Meschede M, Frisch W (1998) A plate tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean plate. Tectonophys 296:269–291

    Article  Google Scholar 

  • Nowell GM, Pearson DG, Parman SW, Luguet A, Hanski E (2008) Precise and accurate 186Os/188Os and 187Os/188Os measurements by multi-collector plasma ionisation mass spectrometry, part II: Laser ablation and its application to single-grain Pt–Os and Re–Os geochronology. Chem Geol 248:394–426

    Article  Google Scholar 

  • Pagé P, Barnes S-J (2009) Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada. Econ Geol 104:997–1018

    Article  Google Scholar 

  • Parkinson IJ, Hawkesworth CJ, Cohen AS (1998) Ancient mantle in a modern arc: osmium isotopes in Izu-Bonin-Mariana forearc peridotites. Science 281:2011–2013

    Article  Google Scholar 

  • Pearson NJ, Alard O, Griffin WL, Jackson SE, O’Reilly SY (2002) In situ measurement of Re-Os isotopes in mantle sulfides by laser ablation multicollector–inductively coupled plasma mass spectrometry: Analytical methods and preliminary results. Geochim Cosmochim Acta 66:1037–1050

    Article  Google Scholar 

  • Pearson DG, Parman SW, Nowell GM (2007) A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449:202–205

    Article  Google Scholar 

  • Pindell JL, Barrett, SF (1990) Geological evolution of the Caribbean Region; A plate-tectonic perspective. In: Dengo G, Case J (ed) The geology of North America, The Caribbean Region, Geol Soc Am, vol. H, pp. 405–432

  • Pindell JL, Kennan L (2001) Kinematic evolution of the Gulf of Mexico and Caribbean. GCSSEPM found 21st Annual Bob F Perkins Research Conference Transactions, Houston, Petroleum Systems of Deep-Water Basins, pp 193–220

  • Pindell JL, Kennan L, Stanek KP, Maresch WV, Draper G (2006) Foundations of Gulf of Mexico and Caribbean evolution: eight controversies resolved. Geol Acta 4:303–341

    Google Scholar 

  • Proenza J, Gervilla F, Melgarejo JC, Bodinier J-L (1999) Al- and Cr-rich chromitites from the Mayarí-Baracoa Ophiolitic Belt (Eastern Cuba): consequence of interaction between volatile-rich melts and peridotite in suprasubduction mantle. Econ Geol 94:547–566

    Article  Google Scholar 

  • Quick JE (1981) The origin and significance of large, tabular dunite bodies in the Trinity peridotite, Northern California. Contrib Mineral Petrol 78:413–422

    Article  Google Scholar 

  • Rollinson H (2005) Chromite in the mantle section of the Oman ophiolite: a new genetic model. Isl Arc 14:542–550

    Article  Google Scholar 

  • Sambridge M, Lambert DD (1997) Propagating errors in decay equations: examples from the Re–Os isotopic system. Geochim Cosmochim Acta 61:3019–3024

    Article  Google Scholar 

  • Schiano P, Birck J-L, Allègre CJ (1997) Osmium-strontium-neodymium-lead isotopic covariations in mid-ocean ridge basalt glasses and the heterogeneity of the upper mantle. Earth Planet Sci Lett 150:363–379

    Article  Google Scholar 

  • Shi R, Alard O, Zhi X, O’Reilly SY, Pearson NJ, Griffin WL, Zhang M, Chen X (2007) Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru–Os–Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth Planet Sci Lett 261:33–48

    Article  Google Scholar 

  • Suhr G, Hellebrand E, Snow JE, Seck HA, Hofmann AW (2003) Significance of large, refractory dunite bodies in the upper mantle of the Bay of Islands Ophiolite. Geochem Geophys Geosyst 4(3):8605. doi:10.1029/2001GC000277

    Article  Google Scholar 

  • Taylor RN, Nesbitt RW, Vidal P, Harmon RS, Auvray B, Croudace IW (1994) Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. J Petrol 35:577–617

    Google Scholar 

  • The MELT Seismic Team (1998) Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment. Science 280:1215–1218

    Article  Google Scholar 

  • Tredoux M, Lindsay NM, Davies G, McDonald I (1995) The fractionation of platinum-group elements in magmatic systems, with the suggestion of a novel casual mechanism. S Afr J Geol 98:157–167

    Google Scholar 

  • Walker RJ, Hanski E, Vuollo J, Liip J (1996) The Os isotopic composition of Proterozoic upper mantle: evidence for chondritic upper mantle from the Outokumpu ophiolite, Finland. Earth Planet Sci Lett 141:161–173

    Article  Google Scholar 

  • Walker RJ, Morgan JW, Beary ES, Smoliar MI, Czamanske GK, Horan MF (1997) Applications of the 190Pt-186Os isotope system to geochemistry and cosmochemistry. Geochim Cosmochim Acta 61:4799–4807

    Article  Google Scholar 

  • Walker RJ, Horan MF, Morgan JW, Becker H, Grossman JN, Rubin AE (2002) Comparative 187Re–187Os systematics of chondrites: implications regarding early solar system processes. Geochim Cosmochim Acta 66:4187–4201

    Article  Google Scholar 

  • Walker RJ, Brandon AD, Bird JM, Piccoli PM, McDonough WF, Ash RD (2005) 187Os–186Os systematics of Os–Ir–Ru alloy grains from southwestern Oregon. Earth Planet Sci Lett 230:211–226

    Article  Google Scholar 

  • Yumul GP (2004) Zambales ophiolite complex (Philippines) transition-zone dunites: restite, cumulate, or replacive products? Intern Geol Rev 46:259–272

    Article  Google Scholar 

  • Zaccarini F, Garuti G, Cawthorn RG (2002) Platinum-group minerals in chromitite xenoliths from Onverwacht and Tweefontein ultramafic pipes, eastern Bushveld Complex, South Africa. Can Mineral 40:481–497

    Article  Google Scholar 

  • Zhou M-F, Robinson PT, Malpas J, Li Z (1996) Podiform chromitites in the Luobusa ophiolite (Southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol 37:3–21

    Article  Google Scholar 

  • Zhou M-F, Sun M, Keays RR, Kerrich RW (1998) Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochim Cosmochim Acta 62:677–688

    Article  Google Scholar 

Download references

Acknowledgments

We thank Anders Meibom and two anonymous reviewers for their constructive remarks on the submitted version of the manuscript. We are grateful to O. Alard for his useful comments on a preliminary version of the manuscript. The analytical data were obtained using instrumentation funded by ARC LIEF, and DEST, Systemic Infrastructure Grants, industry partners and Macquarie University. This study was financially assisted by the “International Lithospheric Project” (ILP) task force CC4-MEDYNA; by the Spanish “Ministerio de Ciencia e Innovación” (MICINN) research grants CGL2010-14848/BTE, CGL2007-61205/BTE, AI-HF2008-073 and F.P.I. BES-2005-8328; by the “Generalitat de Catalunya” grant 2009 SGR 444; and by the “Junta de Andalucía” research groups and grant RNM-131, RNM-145, and “Proyecto de Excelencia-2009-RNM-4495”. C.M.’s research has been supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme and by a postdoctoral fellowship from the Universidad de Granada (Spain). This is contribution 676 from the Australian Research Council National Key Centre for the Geochemical Evolution and Metallogeny of Continents (http://www.gemoc.mq.edu.au).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Marchesi.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchesi, C., González-Jiménez, J.M., Gervilla, F. et al. In situ Re–Os isotopic analysis of platinum-group minerals from the Mayarí-Cristal ophiolitic massif (Mayarí-Baracoa Ophiolitic Belt, eastern Cuba): implications for the origin of Os-isotope heterogeneities in podiform chromitites. Contrib Mineral Petrol 161, 977–990 (2011). https://doi.org/10.1007/s00410-010-0575-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0575-2

Keywords

Navigation