Skip to main content
Log in

Magmatic evolution of the ultramafic–mafic Kharaelakh intrusion (Siberian Craton, Russia): insights from trace-element, U–Pb and Hf-isotope data on zircon

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The ultramafic–mafic Kharaelakh intrusion in the northwestern part of the Siberian Craton (Russia) hosts major economic platinum-group-element (PGE)–Cu–Ni sulphide deposits. In situ U–Pb, REE and Hf-isotope analyses of zircon from these rocks, combined with detailed study of crystal morphology and internal structure, identify four zircon populations. U–Pb ages of these populations cover a significant time span (from 347 ± 16 to 235.7 ± 6.1 Ma) suggesting multiple magmatic events that cluster around 350 and 250 Ma, being consistent with two recognised stages of active tectonism in the development of the Siberian Craton. The oldest zircon population, however, represents previously unknown stage of magmatic activity in the Noril’sk area. Epsilon-Hf values of +2.3 to +16.3 in the analysed zircons reflect a dominant role of mantle-derived magmas and suggest that juvenile mantle material was the main source for the ultramafic–mafic Kharaelakh intrusion. A significant range in initial 176Hf/177Hf values, found in zircons that cluster around 250 Ma, indicate mixing between mantle and crustal magma sources. Our findings imply that economic intrusions hosting PGE–Cu–Ni deposits of the Noril’sk area have a far more complex geological history than is commonly assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arndt NT (2005) The conduits of magmatic ore deposits. Mineralogical Association of Canada Short Course 35, pp 161–182

  • Arndt NT, Czamanske GK, Walker RJ, Chauvel C, Fedorenko VA (2003) Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu–Ni–PGE sulfide deposits. Econ Geol 98:495–515

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NJ (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622

    Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY (2006) Zircon crystal morphology, trace-element signatures and Hf-isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids. J Petrol 47:329–353

    Article  Google Scholar 

  • Bizzarro M, Baker JA, Haack H, Ulfbeck D, Rosing M (2003) Early history of Earth’s crust–mantle system inferred from hafnium isotopes in chondrites. Nature 421:931–933

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis CF (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Blichert-Toft J, Albarede F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Article  Google Scholar 

  • Campbell IH, Czamanske GK, Fedorenko VA, Hill RI, Stepanov V (1992) Synchronism of the Siberian traps and the Permian–Triassic boundary. Science 255:1760–1763

    Article  Google Scholar 

  • Czamanske GK, Zen’ko TE, Fedorenko VA, Calk LC, Budahn JR, Bullock JH, Fries TL, King BS, Siems DF (1995) Petrography and geochemical characterization of ore-bearing intrusions of the Noril’sk type, Siberia; with discussion of their origin. Resource Geol Special Issue 18:1–48

    Google Scholar 

  • DeBievre P, Taylor PDP (1993) Table of the isotopic composition of the elements. Int J Mass Spectrom Ion Process 123:149

    Article  Google Scholar 

  • Distler VV, Grokhovskaya TL, Evstigneeva TL, Sluzhenikin SF, Filimonova AA, Dyuzhikov OA, Laputina IP (1988) Petrology of magmatic sulfide ore formation. Nauka, Moscow, 232 pp (in Russian)

  • Dobretsov NL, Kirdyashkin AA, Kirdyashkin AG, Vernikovsky VA, Gladkov IN (2008) Modelling of thermochemical plumes and implications for the origin of the Siberian traps. Lithos 100:66–92

    Article  Google Scholar 

  • Godlevsky MN (1958) Traps and ore-bearing intrusions of the Noril’sk region. Gostekhmetizdat, Moscow, 68 pp (in Russian)

  • Griffin WL, Ryan CG, Kaminsky FV, O’Reilly SY, Natapov LM, Win TT, Kinny PD, Ilupin IP (1999) The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310:1–35

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achtenbergh, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma genesis, SE China: in situ analysis of Hf isotopes, Pingtan and Tonglu igneous complexes. Lithos 61:237–269

    Article  Google Scholar 

  • Griffin WL, Belousova EA, Shee SR, Pearson NJ, O’Reilly SY (2004) Archean crustal evolution in the northern Yilgam Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambr Res 131:231–282

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova EA, Saeed A (2006) Comment: Hf-isotope heterogeneity in zircon 91500. Chem Geol 233:358–363

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova EA, Saeed A (2007) Reply to “Comment to short communication ‘Comment Hf-isotope heterogeneity in zircon 91500 by W.L. Griffin, N.J. Pearson, E.A. Belousova, A. Saeed (Chemical Geology 233 (2006) 358–363)” by F. Corfu. Chem Geol 244:354–356

    Article  Google Scholar 

  • Grinenko LN (1985) Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian platform. Int Geol Rev 28:695–708

    Article  Google Scholar 

  • Horan MF, Walker RJ, Fedorenko VA, Czamanske GK (1995) Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalts sources. Geochim Cosmochim Acta 59:5159–5168

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:27–62

  • Ivanov AV (2007) Evaluation of different models for the origin of the Siberian traps. In: Fougler GR, Jurdy DM (eds) The origin of melting anomalies: plates, plumes and planetary processes, vol. 430. Spec. Paper Geol Soc Am, pp 669–691

  • Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Article  Google Scholar 

  • Kamo SL, Czamanske GK, Krough TE (1996) A minimum U–Pb age for Siberian flood-basalt volcanism. Geochim Cosmochim Acta 60:3505–3511

    Article  Google Scholar 

  • Kamo SL, Czamanske GK, Amelin Y, Fedorenko VA, Davis DW, Trofimov VR (2003) Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett 214:75–91

    Article  Google Scholar 

  • Kinny PD, Dawson JB (1992) A mantle metasomatic injection event linked to late Cretaceous Kimberlite magmatism. Nature 360:726–728

    Article  Google Scholar 

  • Knauf VV (1996) On the metrological background of mineralogical investigations. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva (Proc Russian Mineral Soc) 125:109–113 (in Russian)

  • Knauf VV, Guseva NS, Knauf OV (2007) Application of the “ppm—mineralogy” technique for isotope dating and mineralogical study of ore deposits in mafic–ultramafic complexes based on minute accessory minerals. In: Andrew CJ et al (eds) Proceedings of the ninth biennial SGA meeting 1. Navan, Ireland, pp 777–779

  • Kogarko LN, Karpenko SF, Lyalikov AV, Teptelev MP (1988) Isotope criteria of the meimechitegenesis. Doklady Academii Nauk SSSR 301:939–942 (in Russian)

    Google Scholar 

  • Kravchinsky VA, Konstantinov KM, Courtillot V, Savrasov JI, Valet J-P, Chernyi SD, Mishenin SG, Parasotka BS (2002) Paleomagnetism of East Siberian traps and kimberlites: two new poles and paleogeographic reconstructions at about 360 and 250 Ma. Geophys J Int 148:1–33

    Article  Google Scholar 

  • Kuz’min VK, Tuganova EV (1977) New data on the isotope composition of sulfur in the copper–nickel sulfide ores of the northwestern part of the Siberian Platform. Soviet Geol Geophys 18:98–100

    Google Scholar 

  • Latypov RM (2002) Phase equilibria constraints on relations of ore-bearing intrusions with flood basalts in the Noril’sk region, Russia. Contrib Mineral Petrol 143:438–449

    Google Scholar 

  • Lightfoot PC, Hawkesworth CJ, Hergt J, Naldrett AJ, Gorbachev NS, Fedorenko VA, Doherty W (1993) Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia. Contrib Mineral Petrol 114:171–188

    Article  Google Scholar 

  • Ludwig KR (2003) User’s Manual for ISOPLOT/Ex 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4, 70 pp

  • Ludwig KR (2005) SQUID 1.12. A User’s Manual. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication. No. 2, 2455 Ridge Road, Berkeley, CA 94709, USA, 22 p

  • Lyul’ko VA, Amosov YN, Kozyrev SM, Komarova MZ, Ryabikin VA, Rad’ko VA, Simonov ON, Rochev NV (2002) The state of the ore base of non-ferrous and noble metals in the Noril`sk region, with guidelines of top-priority geological and exploration works. Rudy i Metally 5:66–82 (in Russian)

    Google Scholar 

  • Maas R, Kinny PD, Williams IS, Froude DO, Compston W (1992) The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim Cosmochim Acta 56:1281–1300

    Article  Google Scholar 

  • Malich KN, Petrov OV, Badanina IYu, Presnyakov SL (2007) Zircons from ultramafic–mafic intrusions at Noril’sk area (Russia): a compositional and U–Pb study. Geochim Cosmochim Acta 71(15S):A616–A616

    Google Scholar 

  • Malitch KN (1999) Platinum-group elements in clinopyroxenite–dunite massifs of the Eastern Siberia (geochemistry, mineralogy, and genesis). Saint Petersburg Cartographic Factory VSEGEI Press, St. Petersburg, 296 pp (in Russian)

  • Malitch KN, Tuganova EV (2009) Petrologic, geochemical and isotopic heterogeneity of substance sources in economic ultramafic–mafic intrusions of the Noril’sk region (Russia). Mafic–ultramafic complexes of folded regions and related deposits. Abstracts of the 3rd international conference, vol 2. Institute of Geology and Geochemistry of Russian Academy of Sciences, Ekaterinburg, pp 42–45 (in Russian)

  • Malitch KN, Melcher F, Muhlhans H (2001) Palladium and gold mineralization in podiform chromitite at Kraubath, Austria. Mineral Petrol 73:247–277

    Article  Google Scholar 

  • Malitch KN, Belousova EA, Griffin WL, Badanina IYu, Petrov OV, Pearson NJ (2008a) Contrasting magma sources in ultramafic–mafic intrusions of the Noril’sk area (Russia): Hf isotope evidence from zircon. Geochim Cosmochim Acta 72(12S):A589–A589 (Spec. Suppl. Awards Ceremony Speeches and Abstracts of the 18th Annual V.M. Goldschmidt Conference, Vancouver, Canada, July 2008)

  • Malitch KN, Belousova EA, Petrov OV, Griffin WL, Pearson NJ, Tuganova EV (2008b) Magma sources in economic and non-economic ultramafic–mafic intrusions of the Noril’sk area (Russia): constraints from U–Pb and Hf isotope data on zircon. Geophysical Research Abstracts 10, EGU2008-A-06860 (SRef-ID: 1607-7962/gra/EGU2008-A-06860), EGU General Assembly 2008 (CD-ROM)

  • Malitch KN, Badanina IYu, Belousova EA, Griffin WL, Petrov OV, Tuganova EV, Distler VV, Sluzhenikin SF, Presnyakov SL, Rodionov NV (2009a) U–Pb age constraints on temporal evolution of the ore-bearing Noril’sk-1 intrusion: evidence from zircon and baddeleyite. Mafic–ultramafic complexes of folded regions and related deposits. Abstracts of the 3rd International Conference, vol 1. Institute of Geology and Geochemistry of Russian Academy of Sciences, Ekaterinburg, pp 24–27

  • Malitch KN, Griffin WL, Badanina IYu, Petrov OV, Tuganova EV, Belousova EA, Pearson NJ, Knauf VV, Presnyakov SL (2009b) Zircon from the economic ultramafic–mafic Kharaelakh intrusion (Russia): first U–Pb and Hf-isotope constraints on timing and source composition. Extended Abstracts of XXVI International Conference on “Geochemistry of Magmatic Rocks”. ONTI GEOKHI RAS Press, Moscow, pp 96–98

  • Malitch NS (1975) Tectonic evolution of the cover of the Siberian Craton. Nedra Press, Moscow, 215 pp (in Russian)

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Murgulov V, O’Reilly SY, Griffin WL, Blevin PL (2008) Magma sources and gold mineralisation in the Mount Leyshon and Tuckers igneous Complexes, Queensland, Australia: U–Pb and Hf isotope evidence. Lithos 101:281–307

    Article  Google Scholar 

  • Naldrett AJ (2004) Magmatic sulfide deposits. Springer, Berlin, 727 pp

  • Naldrett AJ, Fedorenko VA, Lightfoot PC, Kunilov VI, Gorbachev NS, Doherty W, Johan Z (1995) Ni–Cu–PGE deposits of Noril’sk region, Siberia: their formation in conduits for flood basalt volcanism. Inst Mining Metall: B18–B36

  • Pearce JG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21:115–144

    Article  Google Scholar 

  • Pearson NJ, Griffin WL, O’Reilly SY (2008) Mass fractionation correction in laser ablation-multiple collector ICP-MS: implications for overlap corrections and precise and accurate in situ isotope ratio measurement. In: Sylvester P (ed) Laser-Ablation-ICP-MS in the Earth Sciences: current practices and outstanding issues. Mineralogical Association of Canada Short Course 40 Vancouver, BC, pp 93–116

  • Petrov OV, Malitch KN, Khalenev VO, Tuganova EV (2007a) S isotopic characteristics of PGE–Cu–Ni ores from the Noril’sk-Talnakh area (Russia): new data. In: Geophysical Research Abstracts 9, 10314 (SRef-ID: 1607-7962/gra/EGU2007-A-10314), European Geosciences Union 2007 (CD-ROM)

  • Petrov OV, Malitch KN, Pushkarev YuD, Bogomolov ES (2007b) Isotope-geochemical criterion in search for the Noril’sk-type massive PGE–Cu–Ni sulphide ores: constraints from Pb, Nd and Sr isotope data. Geochim Cosmochim Acta 71(15S):A782–A782

    Google Scholar 

  • Petrov OV, Malitch KN, Shevchenko SS, Tuganova EV, Kapitonov, IN, Prilepsky EB (2008) Isotope-geochemical criteria in exploration for Cu–Ni sulphide ores associated with the Noril’sk-type intrusions (Russia): constraints from S and Cu isotope data. In: Geophysical Research Abstracts 10, EGU2008-A-10763 (SRef-ID: 1607-7962/gra/EGU2008-A-10763), EGU General Assembly 2008 (CD-ROM)

  • Pin C, Joannon S, Bosq Ch, Le Fèvre B, Gauthier PJ (2003) Precise determination of Rb, Sr, Ba, and Pb in geological materials by isotope dilution and ICP-quadrupole mass spectrometry following separation of the analytes. J Anal Atomic Spectrom 18:135–141

    Article  Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Article  Google Scholar 

  • Reichow MK, Pringle MS, Al’mukhamedov AI, Allen MB, Andreichev VL, Buslov MM, Davies CE, Fedoseev GS, Fitton JG, Inger S, Medvedev AYa, Mitchell C, Puchkov VN, Safonova IYu, Scott RA, Saunders AD (2009) The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet Sci Lett 277:9–20

    Article  Google Scholar 

  • Renne PR, Basu AR (1991) Rapid eruption of the Siberian traps flood basalts at the Permo-Triassic boundary. Science 253:176–179

    Article  Google Scholar 

  • Richard P, Shimizu N, Allègre CJ (1976) 143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth Planet Sci Lett 31:269–278

    Article  Google Scholar 

  • Ripley EM, Li C (2003) Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu–Ni–(PGE) deposits. Econ Geol 98:635–641

    Article  Google Scholar 

  • Rudashevsky NS, Garuti G, Andersen JCØ, Kretser YL, Rudashevsky VN, Zaccarini F (2002) Separation of accessory minerals from rocks and ores by hydroseparation (HS) technology: method and application to CHR-2 chromitite, Niquelandia, Brazil. Transactions, Institution of Mining and Metallurgy/Proceedings Australasian Institute Mining Metallurgy, Section B. Appl Earth Sci 111:87–94

    Google Scholar 

  • Rudnick RL, Ireland TR, Gehrels G, Irving AJ, Chesley JT, Hanchar JM (1998) Dating mantle metasomatism: U–Pb geochronology of zircons in cratonic mantle xenoliths from Montana and Tanzania. Extended Abstracts of the 7th International Kimberlite Conference, Cape Town, pp 754–756

  • Scherer E, Munker C, Mezger K (2001) Calibration of the lutenium-hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Sharma M, Basu AR, Nesterenko GV (1992) Temporal Sr-, Nd-, and Pb-isotopic variations in the Siberian flood basalts: Implications for the plume-source characteristics. Earth Planet Sci Lett 113:365–381

    Article  Google Scholar 

  • Soderlund U, Patchett JP, Vervoort JD, Isachsen CE (2004) The Lu-176 decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Stieger RH, Jager E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Tera F, Wasserburg G (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304

    Article  Google Scholar 

  • Tera F, Wasserburg G (1973) A response to a comment on U–Pb systematics in lunar basalts. Earth Planet Sci Lett 19:213–217

    Article  Google Scholar 

  • Tuganova EV (1991) Petrological geodynamical model of formation of sulfide copper-nickel deposits. Soviet Geol Geophys 32:1–7

    Google Scholar 

  • Tuganova EV (2000) Petrographic types, genesis and regularities of distribution of PGE–Cu–Ni sulfide deposits. VSEGEI Press, St. Petersburg, 102 pp (in Russian)

  • Tuganova YeV, Malich KN (1990) Platinum potential of Noril`sk-type intrusions. Transactions (Doklady) of the USSR Academy of Sciences. Earth Sci Sect 313:267–271

    Google Scholar 

  • Tuganova EV, Shergina YuP (1997) Isotope-geochemical peculiarities of rocks from Noril’sk-type intrusions. In: Simonov ON, Malitch NS (eds) Nedra Taimyra (Resources of Taimyr), VSEGEI Press, Noril’sk, vol 5. pp 114–122 (in Russian)

  • Tuganova EV, Shergina YuP (2003) Isotope-geochemical lithological heterogeneity in ore-bearing Noril’sk-type intrusions: genetic considerations. Reg Geol Metallog 17:140–146 (in Russian)

    Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarede F (1999) Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168:79–99

    Article  Google Scholar 

  • Walker RJ, Morgan JW, Horan MF, Czamanske GK, Krogstad EJ, Fedorenko VA, Kunilov VE (1994) Re–Os isotopic evidence for an enriched-mantle source for the Noril’sk-type, ore-bearing intrusion, Siberia. Geochim Cosmochim Acta 58:4179–4197

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newslett 19:1–23

    Article  Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibbe MA, Shanks WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econom Geol 7:1–35

  • Wooden JL, Czamanske GK, Fedorenko VA, Arndt NT, Chauvel C, Bouse RM, King B-SW, Knight RJ, Siems DF (1993) Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim Cosmochim Acta 57:3677–3704

    Article  Google Scholar 

  • Zhang M, O’Reilly SY, Wang K-L, Hronsky J, Griffin WL (2008) Flood basalts and metallogeny: the lithospheric connection. Earth-Sci Rev 86:145–174

    Article  Google Scholar 

Download references

Acknowledgments

This investigation forms part of a larger project (RFBR 09-05-12028-ofi-m) aimed on geochronology and isotope-geochemical speciation of ultramafic–mafic magmatism of the Noril’sk and Karelo-Kol’sk Provinces (Russia). The analytical work at VSEGEI was supported through the contract 7F-TAO/2005 from the Agency of Natural Resources of the Russian Federation. The analytical work at GEMOC used instrumentation funded by ARC LIEF and DEST Systemic Infrastructure Grants, Macquarie University and Industry. We thank V.V. Knauf for separating zircons from rock samples, N.G. Berezhnaya for preparing a zircon mount, A.A. Antonov for BSE and cathodoluminiscence imaging, E.V. Tolmacheva for initial input during zircon thin-section study, E.S. Bogomolov and P.B. Lebedev for performing ID-TIMS analyses, S.M. Tuganova and S.N. Bocharov for drafting the figures. Valuable discussions with O.V. Petrov, S.S. Shevchenko, S.V. Sokolov, S.Y. O’Reilly, V.V. Distler, S.F. Sluzhenikin, O.N. Simonov, F.P. Mitrofanov, T.B. Bayanova and D.I. Matukov are gratefully acknowledged. This paper has benefitted from constructive criticism of Anders Schersten, two unidentified reviewers, and helpful comments by Associate Editor Chris Ballhaus and Executive Editor Jochen Hoefs. This is contribution 620 from the ARC National Key Centre for the Geochemical Evolution and Metallogeny of Continents (http://www.es.mq.edu.au/GEMOC/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kreshimir Nenadovitch Malitch.

Additional information

Communicated by C. Ballhaus.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malitch, K.N., Belousova, E.A., Griffin, W.L. et al. Magmatic evolution of the ultramafic–mafic Kharaelakh intrusion (Siberian Craton, Russia): insights from trace-element, U–Pb and Hf-isotope data on zircon. Contrib Mineral Petrol 159, 753–768 (2010). https://doi.org/10.1007/s00410-009-0452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0452-z

Keywords

Navigation