, Volume 189, Issue 2, pp 121-129
Date: 22 Dec 2010

Assessment of Small-Airways Disease Using Alveolar Nitric Oxide and Impulse Oscillometry in Asthma and COPD

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The contribution of the alveolar compartment to exhaled nitric oxide (alveolar nitric oxide or CANO) can be calculated as a surrogate of distal inflammation. This value should be corrected for nitric oxide produced in the conducting airways which “back-diffuses” into the alveolar compartment (Corrected CANO). Impulse oscillometry (IOS) (Nava et al., Am J Respir Crit Care Med 168:1432–1437, 2003) is used to derive values for peripheral airways resistance. Twenty-four healthy volunteers, 21 severe asthmatics, 15 mild-to-moderate asthmatics, and 24 COPD patients were assessed with spirometry, impulse oscillometry, and fractionated exhaled nitric oxide. Compared to healthy volunteers, FENO was higher in mild-to-moderate and severe asthmatics: geometric mean fold ratios of 1.91 (P = 0.02) and 2.74 (P < 0.001), respectively. However, there was no difference for mild-to-moderate versus severe asthma. Ratios for CANO were not different for severe asthma versus COPD, but both were elevated compared to that of healthy volunteers [2.64 (P < 0.001) and 3.07 (P < 0.001), respectively] and mild-to-moderate asthma [1.95 (P = 0.04) and 2.28 (P < 0.01)]. However, after correction for axial diffusion, Corrected CANO was increased in COPD compared to severe asthma (geometric mean fold ratio 1.28, P = 0.04), mild-to-moderate asthma (1.34, P < 0.01), and healthy volunteers (1.28, P = 0.02), and there was no difference between other groups. R5 and RF were reduced in healthy volunteers versus mild-to-moderate asthma (P = 0.011 and P < 0.001 respectively), severe asthma (P = 0.002 and P < 0.001), and COPD (P < 0.001 and P < 0.001). Peripheral resistance (R5–R20) was not different for healthy versus mild-to-moderate asthma but was higher in severe asthma (P < 0.001) and COPD (P < 0.001). Correlations were observed between R5–R20 versus FEF25–75 (r = 0.71, P < 0.01), CANO (r = 0.44, P < 0.01), and Corrected CANO (r = 0.24, P < 0.01). CANO and IOS provide additional information to traditional measures of spirometry and tidal nitric oxide. Previous data reporting elevated alveolar nitric oxide in severe asthma may reflect back-diffusion of nitric oxide from the conducting airways into the alveolar compartment. Corrected CANO and IOS may prove to be useful noninvasive measurements of small-airways disease.