Skip to main content

Advertisement

Log in

Are morphological changes necessary to mediate the therapeutic effects of electroconvulsive therapy?

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The neurotrophic hypothesis has become the favorite model to explain the antidepressant properties of electroconvulsive therapy (ECT). It is based on the assumption that a restoration of previously defective neural networks drives therapeutic effects. Recent data in rather young patients suggest that neurotrophic effects of ECT might be detectable by diffusion tensor imaging. We here aimed to investigate whether the therapeutic response to ECT necessarily goes along with mesoscopic effects in gray matter (GM) or white matter (WM) in our patients in advanced age. Patients (n = 21, 15 males and 7 females) suffering from major depressive disorder were treated with ECT. Before the start of treatment and after the completion of the index series, they underwent magnetic resonance imaging, including a diffusion-weighed sequence. We used voxel-based morphometry to assess GM changes and tract-based spatial statistics and an SPM-based whole-brain analysis to detect WM changes in the course of treatment. Patients significantly improved clinically during the course of ECT. This was, however, not accompanied by GM or WM changes. This result challenges the notion that mesoscopic brain structure changes are an obligatory prerequisite for the antidepressant effects of ECT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ottosson JO (1960) Experimental studies of the mode of action of electroconvulsive therapy. Acta Psychiatr Scand 145(Suppl):1–141

    Google Scholar 

  2. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809

    Article  CAS  PubMed  Google Scholar 

  3. Piccinni A, Del Debbio A, Medda P, Bianchi C, Roncaglia I, Veltri A, Zanello S, Massimetti E, Origlia N, Domenici L, Marazziti D, Dell’Osso L (2009) Plasma brain-derived neurotrophic factor in treatment-resistant depressed patients receiving electroconvulsive therapy. Eur Neuropsychopharmacol 19(5):349–355

    Article  CAS  PubMed  Google Scholar 

  4. Kondratyev A, Ved R, Gale K (2002) The effects of repeated minimal electroconvulsive shock exposure on levels of mRNA encoding fibroblast growth factor-2 and nerve growth factor in limbic regions. Neuroscience 114(2):411–416

    Article  CAS  PubMed  Google Scholar 

  5. Tang SW, Helmeste D, Leonard B (2012) Is neurogenesis relevant in depression and in the mechanism of antidepressant drug action? A critical review. World J Biol Psychiatry 13(6):402–412

    Article  PubMed  Google Scholar 

  6. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20(24):9104–9110

    CAS  PubMed  Google Scholar 

  7. Inta D, Lima-Ojeda JM, Lau T, Tang W, Dormann C, Sprengel R, Schloss P, Sartorius A, Meyer-Lindenberg A, Gass P (2013) Electroconvulsive therapy induces neurogenesis in frontal rat brain areas. PLoS ONE 8(7):e69869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen F, Madsen TM, Wegener G, Nyengaard JR (2009) Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus. Eur Neuropsychopharmacol 19(5):329–338

    Article  CAS  PubMed  Google Scholar 

  9. Gombos Z, Spiller A, Cottrell GA, Racine RJ, McIntyre Burnham W (1999) Mossy fiber sprouting induced by repeated electroconvulsive shock seizures. Brain Res 844(1–2):28–33

    Article  CAS  PubMed  Google Scholar 

  10. Minelli A, Zanardini R, Abate M, Bortolomasi M, Gennarelli M, Bocchio-Chiavetto L (2011) Vascular endothelial growth factor (VEGF) serum concentration during electroconvulsive therapy (ECT) in treatment resistant depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 35(5):1322–1325

    Article  CAS  PubMed  Google Scholar 

  11. Bumb JM, Aksay SS, Janke C, Kranaster L, Geisel O, Gass P, Hellweg R, Sartorius A (2015) Focus on ECT seizure quality: serum BDNF as a peripheral biomarker in depressed patients. Eur Arch Psychiatry Clin Neurosci 265(3):227–232

    Article  PubMed  Google Scholar 

  12. Lyden H, Espinoza RT, Pirnia T, Clark K, Joshi SH, Leaver AM, Woods RP, Narr KL (2014) Electroconvulsive therapy mediates neuroplasticity of white matter microstructure in major depression. Transl Psychiatry 8(4):e380

    Article  Google Scholar 

  13. Ono J, Harada K, Takahashi M, Maeda M, Ikenaka K, Sakurai K, Sakai N, Kagawa T, Fritz-Zieroth B, Nagai T (1995) Differentiation between dysmyelination and demyelination using magnetic resonance diffusional anisotropy. Brain Res 671:141–148

    Article  CAS  PubMed  Google Scholar 

  14. Gulani V, Webb AG, Duncan ID, Lauterbur PC (2001) Apparent diffusion tensor measurements in myelin-deficient rat spinal cords. Magn Reson Med 45:191–195

    Article  CAS  PubMed  Google Scholar 

  15. Sakuma H, Nomura Y, Takeda K, Tagami T, Nakagawa T, Tamagawa Y, Ishii Y, Tsukamoto T (1991) Adult and neonatal human brain: diffusional anisotropy and myelination with diffusion-weighted MR imaging. Radiology 180:229–233

    Article  CAS  PubMed  Google Scholar 

  16. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6 Pt 1):805–821

    Article  CAS  PubMed  Google Scholar 

  17. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Janouschek H, Nickl-Jockschat T, Haeck M, Gillmann B, Grözinger M (2013) Comparison of methohexital and etomidate as anesthetic agents for electroconvulsive therapy in affective and psychotic disorders. J Psychiatr Res 47(5):686–693

    Article  CAS  PubMed  Google Scholar 

  19. D’Elia GO, Ottosson JO, Strömgren LS (1983) Present practice of convulsive therapy in Scandinavia. Arch Gen Psychiatry 40:577–581

    Article  PubMed  Google Scholar 

  20. Swartz CM, Nelson AI (2005) Rational electroconvulsive therapy electrode placement. Psychiatry 2:37–43

    PubMed  PubMed Central  Google Scholar 

  21. Loh N, Nickl-Jockschat T, Sheldrick AJ, Grözinger M (2013) Accessibility, standards and challenges of electroconvulsive therapy in Western industrialized countries: a German example. World J Biol Psychiatry 14(6):432–440

    Article  PubMed  Google Scholar 

  22. Nobler MS, Sackeim HA, Solomou M, Luber B, Devanand DP, Prudic J (1993) nEEG manifestations during ECT: effects of electrode placement and stimulus intensity. Biol Psychiatry 34:321–330

    Article  CAS  PubMed  Google Scholar 

  23. Suppes T, Webb A, Carmody T, Gordon E, Gutierrez-Esteinou R, Hudson JI, Pope HG Jr (1996) Is postictal electrical silence a predictor of response to electroconvulsive therapy? J Affect Disord 41:55–58

    Article  CAS  PubMed  Google Scholar 

  24. Perera TD, Luber B, Nobler MS, Prudic J, Anderson C, Sackeim HA (2004) Seizure expression during electroconvulsive therapy: relationships with clinical outcome and cognitive side effects. Neuropsychopharmacology 29:813–825

    Article  PubMed  Google Scholar 

  25. Folkerts H (1996) The ictal electroencephalogram as a marker for the efficacy of electroconvulsive therapy. Eur Arch Psychiatry Clin Neurosci 246:155–164

    Article  CAS  PubMed  Google Scholar 

  26. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113

    Article  PubMed  Google Scholar 

  27. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44(1):83–98

    Article  PubMed  Google Scholar 

  28. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62(2):782–790

    Article  PubMed  Google Scholar 

  29. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  30. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

  31. Smith SM, Johansen-Berg H, Jenkinson M, Rueckert D, Nichols TE, Miller KL, Robson MD, Jones DK, Klein JC, Bartsch AJ, Behrens TE (2007) Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc 2:499–503

    Article  PubMed  Google Scholar 

  32. Abe O, Takao H, Gonoi W, Sasaki H, Murakami M, Kabasawa H, Kawaguchi H, Goto M, Yamada H, Yamasue H, Kasai K, Aoki S, Ohtomo K (2010) Voxel-based analysis of the diffusion tensor. Neuroradiology 52(8):699–710

    Article  PubMed  Google Scholar 

  33. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851

    Article  PubMed  Google Scholar 

  34. Nobuhara K, Okugawa G, Minami T, Takase K, Yoshida T, Yagyu T, Tajika A, Sugimoto T, Tamagaki C, Ikeda K, Sawada S, Kinoshita T (2004) Effects of electroconvulsive therapy on frontal white matter in late-life depression: a diffusion tensor imaging study. Neuropsychobiology 50:48–53

    Article  CAS  PubMed  Google Scholar 

  35. Gutchess A (2014) Plasticity of the aging brain: new directions in cognitive neuroscience. Science 346(6209):579–582

    Article  CAS  PubMed  Google Scholar 

  36. Vu NQ, Aizenstein HJ (2013) Depression in the elderly: brain correlates, neuropsychological findings, and role of vascular lesion load. Curr Opin Neurol 26(6):656–661

    Article  PubMed  Google Scholar 

  37. Alexopoulos GS, Meyers BS, Young RC, Kakuma T, Silbersweig D, Charlson M (1997) Clinically defined vascular depression. Am J Psychiatry 154(4):562–565

    Article  CAS  PubMed  Google Scholar 

  38. Nickl-Jockschat T, Janouschek H, Eickhoff SB, Eickhoff CR (2015) Lack of meta-analytic evidence for an impact of COMT Val158Met genotype on brain activation during working memory tasks. Biol Psychiatry. doi:10.1016/j.biopsych.2015.02.030

    PubMed  Google Scholar 

  39. Sacher J, Neumann J, Fünfstück T, Soliman A, Villringer A, Schroeter ML (2012) Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord 140(2):142–148

    Article  PubMed  Google Scholar 

  40. Du MY, Wu QZ, Yue Q, Li J, Liao Y, Kuang WH, Huang XQ, Chan RC, Mechelli A, Gong QY (2012) Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 36(1):11–16

    Article  PubMed  Google Scholar 

  41. Liao Y, Huang X, Wu Q, Yang C, Kuang W, Du M, Lui S, Yue Q, Chan RC, Kemp GJ, Gong Q (2013) Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry Neurosci 38(1):49–56

    Article  PubMed  PubMed Central  Google Scholar 

  42. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30:2907–2926

    Article  PubMed  PubMed Central  Google Scholar 

  43. McKinnon MC, Yucel K, Nazarov A, MacQueen GM (2009) A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci 34(1):41–54

    PubMed  PubMed Central  Google Scholar 

  44. Cole J, Costafreda SG, McGuffin P, Fu CH (2011) Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. J Affect Disord 134(1–3):483–487

    Article  PubMed  Google Scholar 

  45. Abbott CC, Jones T, Lemke NT, Gallegos P, McClintock SM, Mayer AR, Bustillo J, Calhoun VD (2014) Hippocampal structural and functional changes associated with electroconvulsive therapy response. Transl Psychiatry 18(4):e483

    Article  Google Scholar 

  46. Joshi SH, Espinoza RT, Pirnia T, Shi J, Wang Y, Ayers B, Leaver A, Woods RP, Narr KL (2015) Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression. Biol Psychiatry. doi:10.1016/j.biopsych.2015.02.029

  47. Devanand DP, Dwork AJ, Hutchinson ER, Bolwig TG, Sackeim HA (1994) Does ECT alter brain structure? Am J Psychiatry 151(7):957–970

    Article  CAS  PubMed  Google Scholar 

  48. Bouckaert F, Sienaert P, Obbels J, Dols A, Vandenbulcke M, Stek M, Bolwig T (2014) ECT: its brain enabling effects: a review of electroconvulsive therapy-induced structural brain plasticity. J ECT 30(2):143–151. doi:10.1097/YCT.0000000000000129

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the JARA Seed Fund “Strukturelle und funktionelle MRI Verlaufsuntersuchungen bei depressiven Patienten während Elektrokrampftherapie.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nickl-Jockschat.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nickl-Jockschat, T., Palomero Gallagher, N., Kumar, V. et al. Are morphological changes necessary to mediate the therapeutic effects of electroconvulsive therapy?. Eur Arch Psychiatry Clin Neurosci 266, 261–267 (2016). https://doi.org/10.1007/s00406-015-0631-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-015-0631-z

Keywords

Navigation