Skip to main content

Advertisement

Log in

Displacement of oropharyngeal structures during suction-swallowing cycles

European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Suction ability plays an important role in supporting oral nutrition and needs special care following neurological disorders and tumor-associated defects. However, the details of suction are still poorly understood. The present study evaluates displacement of orofacial structures during suction and deglutition based on manometric controlled MRI. Nine healthy subjects were scanned wearing an intraoral mouthpiece for water intake by suction and subsequent swallowing. Suction-swallowing cycles were identified by intraoral negative pressure. Midsagittal MRI slices (3 T; temporal resolution 0.53 s) were analyzed at rest, suction and pharyngeal swallowing. The mandibular displacement was measured as the distance between the anterior nasal spine and the inferior point of the mandible. Following areas were defined: subpalatal compartment (SCA), retrolingual (RLA), epipharyngeal (EPA) and mouth floor area (MFA). During rest, an average distance of 7 cm was observed between the mandibular measurement points. The measured SCA was 3.67 cm2, the RLA 6.98 cm2, the EPA 9.00 cm2 and the MFA 15.21 cm2 (average values). At the end of suction, the mandibular distance reduces (to 6.88 cm), the SCA increases significantly (to 5.96 cm2; p = 0.0002), the RLA decreases (to 6.45 cm2), the EPA increases (to 10.59 cm2) and the MFA decreases (to 15.02 cm2). During deglutition, the mandible lifted significantly (to 6.81 cm; p = 0.0276), the SCA reduced to zero, the RLA was not measurable, the EPA reduces significantly (to 3.01 cm2; p < 0.0001) and the MFA increases (to 16.36 cm2). According to these observations, a combined displacement of the tongue in an anteroposterior direction with active tongue dorsum—velum contact appears to be the predominant activity during suction and responsible for the expansion of the subpalatal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Matsuo K, Palmer JB (2009) Coordination of mastication, swallowing and breathing. Jpn Dent Sci Rev 45(1):31–40. doi:10.1016/j.jdsr.2009.03.004

    Article  PubMed Central  PubMed  Google Scholar 

  2. Logemann JA (1988) Swallowing physiology and pathophysiology. Otolaryngol Clin N Am 21(4):613–623

    CAS  Google Scholar 

  3. Gingrich LL, Stierwalt JA, Hageman CF, LaPointe LL (2012) Lingual propulsive pressures across consistencies generated by the anteromedian and posteromedian tongue by healthy young adults. J Speech Lang Hear Res 55(3):960–972. doi:10.1044/1092-4388(2011/10-0357

    Article  PubMed  Google Scholar 

  4. Delaney AL, Arvedson JC (2008) Development of swallowing and feeding: prenatal through first year of life. Dev Disabil Res Rev 14(2):105–117. doi:10.1002/ddrr.16

    Article  PubMed  Google Scholar 

  5. Thexton AJ, Crompton AW, Owerkowicz T, German RZ (2004) Correlation between intraoral pressures and tongue movements in the suckling pig. Arch Oral Biol 49(7):567–575. doi:10.1016/j.archoralbio.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  6. Wein B, Angerstein W, Klajman S (1993) Search movements of the tongue in speech apraxia: imaging with ultrasound and pseudo-3D reconstruction. Nervenarzt 64(2):143–145

    CAS  PubMed  Google Scholar 

  7. Kieser J, Singh B, Swain M, Ichim I, Waddell JN, Kennedy D, Foster K, Livingstone V (2008) Measuring intraoral pressure: adaptation of a dental appliance allows measurement during function. Dysphagia 23(3):237–243. doi:10.1007/s00455-007-9126-z

    Article  PubMed  Google Scholar 

  8. Kennedy D, Kieser J, Bolter C, Swain M, Singh B, Waddell JN (2010) Tongue pressure patterns during water swallowing. Dysphagia 25(1):11–19. doi:10.1007/s00455-009-9223-2

    Article  PubMed  Google Scholar 

  9. Nilsson H, Ekberg O, Olsson R, Kjellin O, Hindfelt B (1996) Quantitative assessment of swallowing in healthy adults. Dysphagia 11(2):110–116

    Article  CAS  PubMed  Google Scholar 

  10. Engelke W, Jung K, Knösel M (2011) Intra-oral compartment pressures: a biofunctional model and experimental measurements under different conditions of posture. Clin Oral Investig 15(2):165–176. doi:10.1007/s00784-009-0367-0

    Article  PubMed Central  PubMed  Google Scholar 

  11. Santander P, Engelke W, Olthoff A, Völter C (2013) Intraoral pressure patterns during swallowing. Eur Arch Otorhinolaryngol 270(3):1019–1025. doi:10.1007/s00405-012-2299-6

    Article  PubMed Central  PubMed  Google Scholar 

  12. Perie S, Laccourreye L, Flahault A, Hazebroucq V, Chaussade S, St Guily JL (1998) Role of videoendoscopy in assessment of pharyngeal function in oropharyngeal dysphagia: comparison with videofluoroscopy and manometry. Laryngoscope 108(11 Pt 1):1712–1716

    Article  CAS  PubMed  Google Scholar 

  13. Logemann JA, Rademaker AW, Pauloski BR, Ohmae Y, Kahrilas PJ (1998) Normal swallowing physiology as viewed by videofluoroscopy and videoendoscopy. Folia Phoniatr Logop 50(6):311–319 (pii 21473)

    Article  CAS  PubMed  Google Scholar 

  14. Wu CH, Hsiao TY, Chen JC, Chang YC, Lee SY (1997) Evaluation of swallowing safety with fiberoptic endoscope: comparison with videofluoroscopic technique. Laryngoscope 107(3):396–401

    Article  CAS  PubMed  Google Scholar 

  15. Butler SG, Stuart A, Kemp S (2009) Flexible endoscopic evaluation of swallowing in healthy young and older adults. Ann Otol Rhinol Laryngol 118(2):99–106

    PubMed  Google Scholar 

  16. Moriniere S, Hammoudi K, Marmouset F, Bakhos D, Beutter P, Patat F (2013) Ultrasound analysis of the upper esophageal sphincter during swallowing in the healthy subject. Eur Ann Otorhinolaryngol Head Neck Dis 130(6):321–325. doi:10.1016/j.anorl.2012.01.008

    Article  CAS  PubMed  Google Scholar 

  17. Galén S, Jost-Brinkmann PG (2010) B-mode and M-mode ultrasonography of tongue movements during swallowing. J Orofac Orthop 71(2):125–135. doi:10.1007/s00056-010-9928-8

    Article  PubMed  Google Scholar 

  18. Hsiao MY, Chang YC, Chen WS, Chang HY, Wang TG (2012) Application of ultrasonography in assessing oropharyngeal dysphagia in stroke patients. Ultrasound Med Biol 38(9):1522–1528. doi:10.1016/j.ultrasmedbio.2012.04.017

    Article  PubMed  Google Scholar 

  19. Vaiman M, Eviatar E, Segal S (2004) Surface electromyographic studies of swallowing in normal subjects: a review of 440 adults. Report 2. Quantitative data: amplitude measures. Otolaryngol Head Neck Surg 131(5):773–780. doi:10.1016/j.otohns.2004.03.014

    Article  PubMed  Google Scholar 

  20. Steele CM, Van Lieshout PH (2004) Use of electromagnetic midsagittal articulography in the study of swallowing. J Speech Lang Hear Res 47(2):342–352. doi:10.1044/1092-4388(2004/024

    Article  PubMed  Google Scholar 

  21. Engelke W, Schönle PW (1991) Electromagnetic articulography: a new method for studying the motor function of the velum palatinum. Folia Phoniatr (Basel) 43(3):147–152

    Article  CAS  Google Scholar 

  22. Anagnostara A, Stoeckli S, Weber OM, Kollias SS (2001) Evaluation of the anatomical and functional properties of deglutition with various kinetic high-speed MRI sequences. J Magn Reson Imaging 14(2):194–199. doi:10.1002/jmri.1172

    Article  CAS  PubMed  Google Scholar 

  23. Panebianco V, Ruoppolo G, Pelle G, Schettino I, Roma R, Bernardo S, De Vincentiis C, Longo L, Passariello R (2010) Morpho-functional patterns of physiologic oropharyngeal swallowing evaluated with dynamic fast MRI. Eur Arch Otorhinolaryngol 267(9):1461–1466. doi:10.1007/s00405-010-1232-0

    Article  CAS  PubMed  Google Scholar 

  24. Zhang S, Olthoff A, Frahm J (2012) Real-time magnetic resonance imaging of normal swallowing. J Magn Reson Imaging 35(6):1372–1379. doi:10.1002/jmri.23591

    Article  PubMed  Google Scholar 

  25. Nilsson H, Ekberg O, Hindfelt B (1995) Oral function test for monitoring suction and swallowing in the neurologic patient. Dysphagia 10(2):93–100

    Article  CAS  PubMed  Google Scholar 

  26. Nilsson H, Ekberg O, Olsson R, Hindfelt B (1998) Dysphagia in stroke: a prospective study of quantitative aspects of swallowing in dysphagic patients. Dysphagia 13(1):32–38

    Article  CAS  PubMed  Google Scholar 

  27. Dodds WJ, Stewart ET, Logemann JA (1990) Physiology and radiology of the normal oral and pharyngeal phases of swallowing. Am J Roentgenol 154(5):953–963. doi:10.2214/ajr.154.5.2108569

    Article  CAS  Google Scholar 

  28. Finkelstein Y, Talmi YP, Kravitz K, Bar-Ziv J, Nachmani A, Hauben DJ, Zohar Y (1991) Study of the normal and insufficient velopharyngeal valve by the “Forced Sucking Test”. Laryngoscope 101(11):1203–1212. doi:10.1288/00005537-199111000-00008

    Article  CAS  PubMed  Google Scholar 

  29. German RZ, Crompton AW, Levitch LC, Thexton AJ (1992) The mechanism of suckling in two species of infant mammal: miniature pigs and long-tailed macaques. J Exp Zool 261(3):322–330. doi:10.1002/jez.1402610311

    Article  CAS  PubMed  Google Scholar 

  30. Moral A, Bolibar I, Seguranyes G, Ustrell JM, Sebastia G, Martinez-Barba C, Rios J (2010) Mechanics of sucking: comparison between bottle feeding and breastfeeding. BMC Pediatr 10:6. doi:10.1186/1471-2431-10-6

    Article  PubMed Central  PubMed  Google Scholar 

  31. Amin MR, Lazarus CL, Pai VM, Mulholland TP, Shepard T, Branski RC, Wang EY (2012) 3 Tesla turbo-FLASH magnetic resonance imaging of deglutition. Laryngoscope 122(4):860–864. doi:10.1002/lary.22496

    Article  PubMed  Google Scholar 

  32. Nilsson H, Ekberg O, Olsson R, Hindfelt B (1996) Quantitative aspects of swallowing in an elderly nondysphagic population. Dysphagia 11(3):180–184

    Article  CAS  PubMed  Google Scholar 

  33. Pearson WG Jr, Hindson DF, Langmore SE, Zumwalt AC (2013) Evaluating swallowing muscles essential for hyolaryngeal elevation by using muscle functional magnetic resonance imaging. Int J Radiat Oncol Biol Phys 85(3):735–740. doi:10.1016/j.ijrobp.2012.07.2370

    Article  PubMed Central  PubMed  Google Scholar 

  34. Amin MR, Achlatis S, Lazarus CL, Branski RC, Storey P, Praminik B, Fang Y, Sodickson DK (2013) Dynamic magnetic resonance imaging of the pharynx during deglutition. Ann Otol Rhinol Laryngol 122(3):145–150

    PubMed Central  PubMed  Google Scholar 

  35. Bae Y, Kuehn DP, Conway CA, Sutton BP (2011) Real-time magnetic resonance imaging of velopharyngeal activities with simultaneous speech recordings. Cleft Palate Craniofac J 48(6):695–707. doi:10.1597/09-158

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Santander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelke, W., Glombek, J., Psychogios, M. et al. Displacement of oropharyngeal structures during suction-swallowing cycles. Eur Arch Otorhinolaryngol 271, 1987–1997 (2014). https://doi.org/10.1007/s00405-014-2919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-014-2919-4

Keywords

Navigation