, Volume 290, Issue 8, pp 441-445

The genetic basis of “Scarsdale Gourmet Diet” variegate porphyria: a missense mutation in the protoporphyrinogen oxidase gene

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract The porphyrias are disorders of porphyrin or porphyrin-precursor metabolism that result from inherited or acquired aberrations in the control of the porphyrin-heme biosynthetic pathway. Variegate porphyria (VP), one of the acute hepatic porphyrias, is characterized by a partial reduction in the activity of protoporphyrinogen oxidase (PPO), and recently, mutations in the PPO gene on chromosome 1q22–23 have been described. Our purpose was to identify the underlying genetic lesion in a severely affected patient with VP and to detect the silent mutation carriers in her family. The disease in this patient was precipitated by carbohydrate restriction as outlined in the “Scarsdale Gourmet Diet”. Our mutation detection and confirmation strategy included PCR, automated sequencing, and restriction enzyme digestion. We identified a missense mutation in the patient and five family members. The mutation consisted of a previously unreported C-to-T transition in exon 5 of the PPO gene, resulting in the substitution of arginine by cysteine, designated R152C. This arginine residue is evolutionarily highly conserved in humans, mice, bacteria, yeast, and plants, indicating the importance of this residue in PPO. Our study established that a missense mutation in the PPO gene was the underlying mutation in this patient with VP and explained the occurrence of the phenotype in this family.

Received: 11 December 1997