Skip to main content

Advertisement

Log in

Macrophage subsets and microglia in multiple sclerosis

Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Along with microglia and monocyte-derived macrophages, macrophages in the perivascular space, choroid plexus, and meninges are the principal effector cells in neuroinflammatory and neurodegenerative disorders. These phagocytes are highly heterogeneous cells displaying spatial- and temporal-dependent identities in the healthy, injured, and inflamed CNS. In the last decade, researchers have debated on whether phagocytes subtypes and phenotypes are pathogenic or protective in CNS pathologies. In the context of this dichotomy, we summarize and discuss the current knowledge on the spatiotemporal physiology of macrophage subsets and microglia in the healthy and diseased CNS, and elaborate on factors regulating their behavior. In addition, the impact of macrophages present in lymphoid organs on CNS pathologies is defined. The prime focus of this review is on multiple sclerosis (MS), which is characterized by inflammation, demyelination, neurodegeneration, and CNS repair, and in which microglia and macrophages have been extensively scrutinized. On one hand, microglia and macrophages promote neuroinflammatory and neurodegenerative events in MS by releasing inflammatory mediators and stimulating leukocyte activity and infiltration into the CNS. On the other hand, microglia and macrophages assist in CNS repair through the production of neurotrophic factors and clearance of inhibitory myelin debris. Finally, we define how microglia and macrophage physiology can be harnessed for new therapeutics aimed at suppressing neuroinflammatory and cytodegenerative events, as well as promoting CNS repair. We conclude that microglia and macrophages are highly dynamic cells displaying disease stage and location-specific fates in neurological disorders. Changing the physiology of divergent phagocyte subsets at particular disease stages holds promise for future therapeutics for CNS pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A-Gonzalez N, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, Deniz J, Ramirez C, Diaz M, Gallardo G, de Galarreta CR, Salazar J, Lopez F, Edwards P, Parks J, Andujar M, Tontonoz P, Castrillo A (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31(2):245–258. doi:10.1016/j.immuni.2009.06.018

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25. doi:10.1016/j.nbd.2009.07.030

    PubMed  CAS  Google Scholar 

  3. Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339(6116):156–161. doi:10.1126/science.1227901

    PubMed  CAS  Google Scholar 

  4. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14(9):1142–1149. doi:10.1038/nn.2887

    PubMed  CAS  Google Scholar 

  5. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543. doi:10.1038/nn2014

    PubMed  CAS  Google Scholar 

  6. Akenami FOT, Koskiniemi M, Mustjoki S, Siren V, Farkkila M, Vaheri A (1997) Plasma and cerebrospinal fluid activities of tissue plasminogen activator, urokinase and plasminogen activator inhibitor-1 in multiple sclerosis. Fibrinolysis Proteol 11(2):109–113. doi:10.1016/S0268-9499(97)80103-8

    CAS  Google Scholar 

  7. Anandasabapathy N, Victora GD, Meredith M, Feder R, Dong B, Kluger C, Yao K, Dustin ML, Nussenzweig MC, Steinman RM, Liu K (2011) Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J Exp Med 208(8):1695–1705. doi:10.1084/jem.20102657

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Andersson U, Tracey KJ (2012) Reflex principles of immunological homeostasis. Annu Rev Immunol 30:313–335. doi:10.1146/annurev-immunol-020711-075015

    PubMed  CAS  Google Scholar 

  9. Arima Y, Harada M, Kamimura D, Park JH, Kawano F, Yull FE, Kawamoto T, Iwakura Y, Betz UA, Marquez G, Blackwell TS, Ohira Y, Hirano T, Murakami M (2012) Regional neural activation defines a gateway for autoreactive T cells to cross the blood–brain barrier. Cell 148(3):447–457. doi:10.1016/j.cell.2012.01.022

    PubMed  CAS  Google Scholar 

  10. Arnett HA, Wang Y, Matsushima GK, Suzuki K, Ting JP (2003) Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocyte regeneration. J Neurosci 23(30):9824–9832

    PubMed  CAS  Google Scholar 

  11. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069. doi:10.1084/jem.20070075

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692. doi:10.1146/annurev.immunol.021908.132557

    PubMed  CAS  Google Scholar 

  13. Axtell RC, Steinman L (2009) Gaining entry to an uninflamed brain. Nat Immunol 10(5):453–455. doi:10.1038/ni0509-453

    PubMed  CAS  Google Scholar 

  14. Baranzini SE, Khankhanian P, Patsopoulos NA, Li M, Stankovich J, Cotsapas C, Sondergaard HB, Ban M, Barizzone N, Bergamaschi L, Booth D, Buck D, Cavalla P, Celius EG, Comabella M, Comi G, Compston A, Cournu-Rebeix I, D’alfonso S, Damotte V, Din L, Dubois B, Elovaara I, Esposito F, Fontaine B, Franke A, Goris A, Gourraud PA, Graetz C, Guerini FR, Guillot-Noel L, Hafler D, Hakonarson H, Hall P, Hamsten A, Harbo HF, Hemmer B, Hillert J, Kemppinen A, Kockum I, Koivisto K, Larsson M, Lathrop M, Leone M, Lill CM, Macciardi F, Martin R, Martinelli V, Martinelli-Boneschi F, McCauley JL, Myhr KM, Naldi P, Olsson T, Oturai A, Pericak-Vance MA, Perla F, Reunanen M, Saarela J, Saker-Delye S, Salvetti M, Sellebjerg F, Sorensen PS, Spurkland A, Stewart G, Taylor B, Tienari P, Winkelmann J, Zipp F, Ivinson AJ, Haines JL, Sawcer S, DeJager P, Hauser SL, Oksenberg JR, Co IMSG, Consor WTCC (2013) Network-based multiple sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 controls. Am J Hum Genet 92(6):854–865. doi:10.1016/j.ajhg.2013.04.019

    Google Scholar 

  15. Barral P, Polzella P, Bruckbauer A, van Rooijen N, Besra GS, Cerundolo V, Batista FD (2010) CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol 11(4):303–312. doi:10.1038/ni.1853

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D, Ellwart JW, Klinkert WE, Flugel-Koch C, Issekutz TB, Wekerle H, Flugel A (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462(7269):94–98. doi:10.1038/nature08478

    PubMed  Google Scholar 

  17. Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD (1995) The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15(4):437–446. doi:10.1002/glia.440150407

    PubMed  CAS  Google Scholar 

  18. Berard JL, Zarruk JG, Arbour N, Prat A, Yong VW, Jacques FH, Akira S, David S (2012) Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Glia 60(7):1145–1159. doi:10.1002/Glia.22342

    PubMed  Google Scholar 

  19. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, Wekerle H, Krishnamoorthy G (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479(7374):538–541. doi:10.1038/nature10554

    PubMed  CAS  Google Scholar 

  20. Bhasin M, Wu M, Tsirka SE (2007) Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC immunology 8:10. doi:10.1186/1471-2172-8-10

    PubMed  PubMed Central  Google Scholar 

  21. Bogie JF, Jorissen W, Mailleux J, Nijland PG, Zelcer N, Vanmierlo T, Van Horssen J, Stinissen P, Hellings N, Hendriks JJA (2013) Myelin alters the inflammatory phenotype of macrophages by activating PPARs. Acta Neuropathol Commun 1(43). doi:10.1186/2051-5960-1-43

  22. Bogie JF, Stinissen P, Hellings N, Hendriks JJ (2011) Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation. J Neuroinflamm 8:85. doi:10.1186/1742-2094-8-85

    CAS  Google Scholar 

  23. Bogie JF, Timmermans S, Huynh-Thu VA, Irrthum A, Smeets HJ, Gustafsson JA, Steffensen KR, Mulder M, Stinissen P, Hellings N, Hendriks JJ (2012) Myelin-derived lipids modulate macrophage activity by liver X receptor activation. PLoS ONE 7(9):e44998. doi:10.1371/journal.pone.0044998

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG, Aerts JM, Amor S, Nieuwenhuis EE, Laman JD (2006) Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129(Pt 2):517–526. doi:10.1093/brain/awh707

    PubMed  Google Scholar 

  25. Bragg DC, Boles JC, Meeker RB (2002) Destabilization of neuronal calcium homeostasis by factors secreted from choroid plexus macrophage cultures in response to feline immunodeficiency virus. Neurobiol Dis 9(2):173–186. doi:10.1006/nbdi.2001.0459

    PubMed  CAS  Google Scholar 

  26. Bragg DC, Hudson LC, Liang YH, Tompkins MB, Fernandes A, Meeker RB (2002) Choroid plexus macrophages proliferate and release toxic factors in response to feline immunodeficiency virus. J Neurovirol 8(3):225–239. doi:10.1080/13550280290049679

    PubMed  CAS  Google Scholar 

  27. Brown DA, Sawchenko PE (2007) Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol 502(2):236–260. doi:10.1002/cne.21307

    PubMed  Google Scholar 

  28. Burdo TH, Lackner A, Williams KC (2013) Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev 254(1):102–113. doi:10.1111/imr.12068

    PubMed  PubMed Central  Google Scholar 

  29. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143. doi:10.1038/nn.3599

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Butovsky O, Landa G, Kunis G, Ziv Y, Avidan H, Greenberg N, Schwartz A, Smirnov I, Pollack A, Jung S, Schwartz M (2006) Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Investig 116(4):905–915. doi:10.1172/JCI26836

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, Doykan CE, Wu PM, Gali RR, Iyer LK, Lawson R, Berry J, Krichevsky AM, Cudkowicz ME, Weiner HL (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Investig 122(9):3063–3087. doi:10.1172/JCI62636

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31(1):149–160. doi:10.1016/j.mcn.2005.10.006

    PubMed  CAS  Google Scholar 

  33. Cailotto C, Gomez-Pinilla PJ, Costes LM, van der Vliet J, Di Giovangiulio M, Nemethova A, Matteoli G, Boeckxstaens GE (2014) Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS ONE 9(1):e87785. doi:10.1371/journal.pone.0087785

    PubMed  PubMed Central  Google Scholar 

  34. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924. doi:10.1038/nn1715

    PubMed  CAS  Google Scholar 

  35. Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G, Hedrick CC, Cook HT, Diebold S, Geissmann F (2013) Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 153(2):362–375. doi:10.1016/j.cell.2013.03.010

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Chinnery HR, Ruitenberg MJ, McMenamin PG (2010) Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice. J Neuropathol Exp Neurol 69(9):896–909. doi:10.1097/NEN.0b013e3181edbc1a

    PubMed  Google Scholar 

  37. Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B (2011) ROR gamma t drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12(6):560–567. doi:10.1038/Ni.2027

    PubMed  CAS  Google Scholar 

  38. Corthals AP (2011) Multiple sclerosis is not a disease of the immune system. Q Rev Biol 86(4):287–321

    PubMed  Google Scholar 

  39. Dayyani F, Belge KU, Frankenberger M, Mack M, Berki T, Ziegler-Heitbrock L (2003) Mechanism of glucocorticoid-induced depletion of human CD14+ CD16+ monocytes. J Leukoc Biol 74(1):33–39

    PubMed  CAS  Google Scholar 

  40. De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT, Piccio L, Raychaudhuri S, Tran D, Aubin C, Briskin R, Romano S, International MSGC, Baranzini SE, McCauley JL, Pericak-Vance MA, Haines JL, Gibson RA, Naeglin Y, Uitdehaag B, Matthews PM, Kappos L, Polman C, McArdle WL, Strachan DP, Evans D, Cross AH, Daly MJ, Compston A, Sawcer SJ, Weiner HL, Hauser SL, Hafler DA, Oksenberg JR (2009) Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 41(7):776–782. doi:10.1038/ng.401

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Denney L, Kok WL, Cole SL, Sanderson S, McMichael AJ, Ho LP (2012) Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome. J Immunol 189(2):551–557. doi:10.4049/jimmunol.1103608

    PubMed  CAS  Google Scholar 

  42. Donnelly DJ, Longbrake EE, Shawler TM, Kigerl KA, Lai W, Tovar CA, Ransohoff RM, Popovich PG (2011) Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS+ macrophages. J Neurosci 31(27):9910–9922. doi:10.1523/JNEUROSCI.2114-11.2011

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Dragunow M (2013) Meningeal and choroid plexus cells—novel drug targets for CNS disorders. Brain Res 1501:32–55. doi:10.1016/j.brainres.2013.01.013

    PubMed  CAS  Google Scholar 

  44. Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC, Bar-Or A, Antel JP (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60(5):717–727. doi:10.1002/glia.22298

    PubMed  Google Scholar 

  45. Edwards KR, Goyal J, Plavina T, Czerkowicz J, Goelz S, Ranger A, Cadavid D, Browning JL (2013) Feasibility of the use of combinatorial chemokine arrays to study blood and CSF in multiple sclerosis. PLoS ONE 8(11):e81007. doi:10.1371/journal.pone.0081007

    PubMed  PubMed Central  Google Scholar 

  46. El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A (2011) The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 12(6):568–575. doi:10.1038/ni.2031

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL, Green KN (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82(2):380–397. doi:10.1016/j.neuron.2014.02.040

    PubMed  CAS  Google Scholar 

  48. Engelhardt B, Wolburg-Buchholz K, Wolburg H (2001) Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech 52(1):112–129. doi:10.1002/1097-0029(20010101)52:1<112:AID-JEMT13>3.0.CO;2-5

    PubMed  CAS  Google Scholar 

  49. Fabriek BO, Van Haastert ES, Galea I, Polfliet MM, Dopp ED, Van Den Heuvel MM, Van Den Berg TK, De Groot CJ, Van Der Valk P, Dijkstra CD (2005) CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 51(4):297–305. doi:10.1002/glia.20208

    PubMed  Google Scholar 

  50. Farber K, Pannasch U, Kettenmann H (2005) Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol Cell Neurosci 29(1):128–138. doi:10.1016/j.mcn.2005.01.003

    PubMed  Google Scholar 

  51. Foote AK, Blakemore WF (2005) Inflammation stimulates remyelination in areas of chronic demyelination. Brain 128(Pt 3):528–539. doi:10.1093/brain/awh417

    PubMed  CAS  Google Scholar 

  52. Frisullo G, Mirabella M, Angelucci F, Caggiula M, Morosetti R, Sancricca C, Patanella AK, Nociti V, Iorio R, Bianco A, Tomassini V, Pozzilli C, Tonali PA, Matarese G, Batocchi AP (2007) The effect of disease activity on leptin, leptin receptor and suppressor of cytokine signalling-3 expression in relapsing-remitting multiple sclerosis. J Neuroimmunol 192(1–2):174–183. doi:10.1016/j.jneuroim.2007.08.008

    PubMed  CAS  Google Scholar 

  53. Fuhrmann M, Bittner T, Jung CKE, Burgold S, Page RM, Mitteregger G, Haass C, LaFerla FM, Kretzschmar H, Herms J (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 13(4):411–413. doi:10.1038/Nn.2511

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Gahmberg CG, Tian L, Ning L, Nyman-Huttunen H (2008) ICAM-5–a novel two-facetted adhesion molecule in the mammalian brain. Immunol Lett 117(2):131–135. doi:10.1016/j.imlet.2008.02.004

    PubMed  CAS  Google Scholar 

  55. Galea I, Palin K, Newman TA, Van Rooijen N, Perry VH, Boche D (2005) Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 49(3):375–384. doi:10.1002/glia.20124

    PubMed  Google Scholar 

  56. Garabedian BV, Lemaigre-Dubreuil Y, Mariani J (2000) Central origin of IL-1beta produced during peripheral inflammation: role of meninges. Brain Res Mol Brain Res 75(2):259–263

    PubMed  CAS  Google Scholar 

  57. Gentleman SM (2013) Review: microglia in protein aggregation disorders: friend or foe? Neuropathol Appl Neurobiol 39(1):45–50. doi:10.1111/nan.12017

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Getts DR, Terry RL, Getts MT, Muller M, Rana S, Shrestha B, Radford J, Van Rooijen N, Campbell IL, King NJ (2008) Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med 205(10):2319–2337. doi:10.1084/jem.20080421

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Glass R, Synowitz M (2014) CNS macrophages and peripheral myeloid cells in brain tumours. Acta Neuropathol. doi:10.1007/s00401-014-1274-2

    PubMed  Google Scholar 

  60. Goldmann T, Wieghofer P, Muller PF, Wolf Y, Varol D, Yona S, Brendecke SM, Kierdorf K, Staszewski O, Datta M, Luedde T, Heikenwalder M, Jung S, Prinz M (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16(11):1618–1626. doi:10.1038/nn.3531

    PubMed  CAS  Google Scholar 

  61. Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119(1):89–105. doi:10.1007/s00401-009-0622-0

    PubMed  Google Scholar 

  62. GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403(6768):439–444. doi:10.1038/35000226

    PubMed  CAS  Google Scholar 

  63. Gredler V, Ebner S, Schanda K, Forstner M, Berger T, Romani N, Reindl M (2010) Impact of human myelin on the maturation and function of human monocyte-derived dendritic cells. Clin Immunol 134(3):296–304. doi:10.1016/j.clim.2009.11.003

    PubMed  CAS  Google Scholar 

  64. Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11(3):328–334. doi:10.1038/nm1197

    PubMed  CAS  Google Scholar 

  65. Han MH, Lundgren DH, Jaiswal S, Chao M, Graham KL, Garris CS, Axtell RC, Ho PP, Lock CB, Woodard JI, Brownell SE, Zoudilova M, Hunt JF, Baranzini SE, Butcher EC, Raine CS, Sobel RA, Han DK, Weissman I, Steinman L (2012) Janus-like opposing roles of CD47 in autoimmune brain inflammation in humans and mice. J Exp Med 209(7):1325–1334. doi:10.1084/jem.20101974

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Henderson AP, Barnett MH, Parratt JD, Prineas JW (2009) Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 66(6):739–753. doi:10.1002/ana.21800

    PubMed  Google Scholar 

  67. Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD (2005) Macrophages and neurodegeneration. Brain Res Brain Res Rev 48(2):185–195. doi:10.1016/j.brainresrev.2004.12.008

    PubMed  CAS  Google Scholar 

  68. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11(2):146–152. doi:10.1038/nm1177

    PubMed  CAS  Google Scholar 

  69. Hettinger J, Richards DM, Hansson J, Barra MM, Joschko AC, Krijgsveld J, Feuerer M (2013) Origin of monocytes and macrophages in a committed progenitor. Nat Immunol 14(8):821–830. doi:10.1038/ni.2638

    PubMed  CAS  Google Scholar 

  70. Hikawa N, Takenaka T (1996) Myelin-stimulated macrophages release neurotrophic factors for adult dorsal root ganglion neurons in culture. Cell Mol Neurobiol 16(4):517–528

    PubMed  CAS  Google Scholar 

  71. Hofmann N, Lachnit N, Streppel M, Witter B, Neiss WF, Guntinas-Lichius O, Angelov DN (2002) Increased expression of ICAM-1, VCAM-1, MCP-1, and MIP-1 alpha by spinal perivascular macrophages during experimental allergic encephalomyelitis in rats. BMC Immunol 3:11

    PubMed  PubMed Central  Google Scholar 

  72. Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev 18(5):461–467. doi:10.1016/j.gde.2008.07.016

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070. doi:10.1161/STROKEAHA.112.659656

    PubMed  CAS  Google Scholar 

  74. Hucke S, Wiendl H, Knolle P, Klotz L (2013) Nuclear receptor control of myeloid cell responses—implications for CNS autoimmunity. Rheumatology 3(2):1–12

    Google Scholar 

  75. Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172(4):1025–1033

    PubMed  CAS  Google Scholar 

  76. Huizinga R, van der Star BJ, Kipp M, Jong R, Gerritsen W, Clarner T, Puentes F, Dijkstra CD, van der Valk P, Amor S (2012) Phagocytosis of neuronal debris by microglia is associated with neuronal damage in multiple sclerosis. Glia 60(3):422–431. doi:10.1002/glia.22276

    PubMed  Google Scholar 

  77. Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, Lang R, Haniffa M, Collin M, Tacke F, Habenicht AJ, Ziegler-Heitbrock L, Randolph GJ (2010) Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115(3):e10–e19. doi:10.1182/blood-2009-07-235028

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Jackson SJ, Giovannoni G, Baker D (2011) Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflamm 8:76. doi:10.1186/1742-2094-8-76

    CAS  Google Scholar 

  79. Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V (2004) Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 199(7):947–957. doi:10.1084/jem.20031389

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, Mori K, Nakao K, Suk K (2013) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 27(3):1176–1190. doi:10.1096/Fj.12-222257

    PubMed  CAS  Google Scholar 

  81. Johansson EM, Sanabra C, Cortes R, Vilaro MT, Mengod G (2011) Lipopolysaccharide administration in vivo induces differential expression of cAMP-specific phosphodiesterase 4B mRNA splice variants in the mouse brain. J Neurosci Res 89(11):1761–1772. doi:10.1002/jnr.22707

    PubMed  CAS  Google Scholar 

  82. Khademi M, Illes Z, Gielen AW, Marta M, Takazawa N, Baecher-Allan C, Brundin L, Hannerz J, Martin C, Harris RA, Hafler DA, Kuchroo VK, Olsson T, Piehl F, Wallstrom E (2004) T cell Ig- and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis. J Immunol 172(11):7169–7176

    PubMed  CAS  Google Scholar 

  83. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. doi:10.1038/nn.3318

    PubMed  CAS  Google Scholar 

  84. Kim KW, Vallon-Eberhard A, Zigmond E, Farache J, Shezen E, Shakhar G, Ludwig A, Lira SA, Jung S (2011) In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118(22):e156–e167. doi:10.1182/blood-2011-04-348946

    PubMed  CAS  Google Scholar 

  85. King IL, Dickendesher TL, Segal BM (2009) Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113(14):3190–3197. doi:10.1182/blood-2008-07-168575

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Kivisakk P, Imitola J, Rasmussen S, Elyaman W, Zhu B, Ransohoff RM, Khoury SJ (2009) Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol 65(4):457–469. doi:10.1002/ana.21379

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Koning N, Bo L, Hoek RM, Huitinga I (2007) Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann Neurol 62(5):504–514. doi:10.1002/ana.21220

    PubMed  CAS  Google Scholar 

  88. Koning N, Uitdehaag BM, Huitinga I, Hoek RM (2009) Restoring immune suppression in the multiple sclerosis brain. Prog Neurobiol 89(4):359–368. doi:10.1016/j.pneurobio.2009.09.005

    PubMed  CAS  Google Scholar 

  89. Konsman JP, Drukarch B, Van Dam AM (2007) (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci 112(1):1–25. doi:10.1042/CS20060043

    PubMed  CAS  Google Scholar 

  90. Kooi EJ, van Horssen J, Witte ME, Amor S, Bo L, Dijkstra CD, van der Valk P, Geurts JJ (2009) Abundant extracellular myelin in the meninges of patients with multiple sclerosis. Neuropathol Appl Neurobiol 35(3):283–295. doi:10.1111/j.1365-2990.2008.00986.x

    PubMed  CAS  Google Scholar 

  91. Kooij G, Kopplin K, Blasig R, Stuiver M, Koning N, Goverse G, van der Pol SM, van Het Hof B, Gollasch M, Drexhage JA, Reijerkerk A, Meij IC, Mebius R, Willnow TE, Muller D, Blasig IE, de Vries HE (2013) Disturbed function of the blood–cerebrospinal fluid barrier aggravates neuro-inflammation. Acta Neuropathol. doi:10.1007/s00401-013-1227-1

    PubMed  Google Scholar 

  92. Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26(1):328–332. doi:10.1523/JNEUROSCI.2615-05.2006

    PubMed  CAS  Google Scholar 

  93. Kouwenhoven M, Teleshova N, Ozenci V, Press R, Link H (2001) Monocytes in multiple sclerosis: phenotype and cytokine profile. J Neuroimmunol 112(1–2):197–205

    PubMed  CAS  Google Scholar 

  94. Kristjansdottir G, Sandling JK, Bonetti A, Roos IM, Milani L, Wang C, Gustafsdottir SM, Sigurdsson S, Lundmark A, Tienari PJ, Koivisto K, Elovaara I, Pirttila T, Reunanen M, Peltonen L, Saarela J, Hillert J, Olsson T, Landegren U, Alcina A, Fernandez O, Leyva L, Guerrero M, Lucas M, Izquierdo G, Matesanz F, Syvanen AC (2008) Interferon regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three distinct populations. J Med Genet 45(6):362–369. doi:10.1136/jmg.2007.055012

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Krumbholz M, Derfuss T, Hohlfeld R, Meinl E (2012) B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol 8(11):613–623. doi:10.1038/nrneurol.2012.203

    PubMed  CAS  Google Scholar 

  96. Kumar A, Loane DJ (2012) Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun 26(8):1191–1201. doi:10.1016/j.bbi.2012.06.008

    PubMed  Google Scholar 

  97. Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, Schwartz M (2013) IFN-gamma-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 136(Pt 11):3427–3440. doi:10.1093/brain/awt259

    PubMed  Google Scholar 

  98. Lastres-Becker I, Innamorato NG, Jaworski T, Rabano A, Kugler S, Van Leuven F, Cuadrado A (2013) Fractalkine activates NRF2/NFE2L2 and heme oxygenase 1 to restrain tauopathy-induced microgliosis. Brain. doi:10.1093/brain/awt323

    PubMed  Google Scholar 

  99. Lima IV, Bastos LF, Limborco-Filho M, Fiebich BL, de Oliveira AC (2012) Role of prostaglandins in neuroinflammatory and neurodegenerative diseases. Mediators Inflamm 2012:946813. doi:10.1155/2012/946813

    PubMed  PubMed Central  Google Scholar 

  100. Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H, Fassbender K (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 26(50):12904–12913. doi:10.1523/JNEUROSCI.2531-06.2006

    PubMed  CAS  Google Scholar 

  101. Liuzzi GM, Latronico T, Fasano A, Carlone G, Riccio P (2004) Interferon-beta inhibits the expression of metalloproteinases in rat glial cell cultures: implications for multiple sclerosis pathogenesis and treatment. Mult Scler 10(3):290–297

    PubMed  CAS  Google Scholar 

  102. Locatelli G, Wortge S, Buch T, Ingold B, Frommer F, Sobottka B, Kruger M, Karram K, Buhlmann C, Bechmann I, Heppner FL, Waisman A, Becher B (2012) Primary oligodendrocyte death does not elicit anti-CNS immunity. Nat Neurosci 15(4):543–550. doi:10.1038/nn.3062

    PubMed  CAS  Google Scholar 

  103. Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L (2011) Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J 25(1):358–369. doi:10.1096/fj.10-171579

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Lu W, Bhasin M, Tsirka SE (2002) Involvement of tissue plasminogen activator in onset and effector phases of experimental allergic encephalomyelitis. J Neurosci 22(24):10781–10789

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, Bruck W, Parisi JE, Scheithauer BW, Giannini C, Weigand SD, Mandrekar J, Ransohoff RM (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365(23):2188–2197. doi:10.1056/NEJMoa1100648

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. doi:10.1016/j.it.2004.09.015

    PubMed  CAS  Google Scholar 

  107. Martins TB, Rose JW, Jaskowski TD, Wilson AR, Husebye D, Seraj HS, Hill HR (2011) Analysis of proinflammatory and anti-inflammatory cytokine serum concentrations in patients with multiple sclerosis by using a multiplexed immunoassay. Am J Clin Pathol 136(5):696–704. doi:10.1309/Ajcp7ubk8ibvmvnr

    PubMed  CAS  Google Scholar 

  108. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1(2):120–129. doi:10.1038/35040009

    PubMed  CAS  Google Scholar 

  109. Maxwell WL, Follows R, DE Ashhurst, Berry M (1990) The response of the cerebral hemisphere of the rat to injury. II. The neonatal rat. Philos Trans R Soc Lond Ser B Biol Sci 328(1250):501–513

    CAS  Google Scholar 

  110. McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11(3):335–339. doi:10.1038/nm1202

    PubMed  CAS  Google Scholar 

  111. McMenamin PG, Wealthall RJ, Deverall M, Cooper SJ, Griffin B (2003) Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell Tissue Res 313(3):259–269. doi:10.1007/s00441-003-0779-0

    PubMed  Google Scholar 

  112. Meeker RB, Bragg DC, Poulton W, Hudson L (2012) Transmigration of macrophages across the choroid plexus epithelium in response to the feline immunodeficiency virus. Cell Tissue Res 347(2):443–455. doi:10.1007/s00441-011-1301-8

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Mildner A, Mack M, Schmidt H, Bruck W, Djukic M, Zabel MD, Hille A, Priller J, Prinz M (2009) CCR2+ Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132(Pt 9):2487–2500. doi:10.1093/brain/awp144

    PubMed  Google Scholar 

  114. Mildner A, Schlevogt B, Kierdorf K, Bottcher C, Erny D, Kummer MP, Quinn M, Bruck W, Bechmann I, Heneka MT, Priller J, Prinz M (2011) Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J Neurosci 31(31):11159–11171. doi:10.1523/JNEUROSCI.6209-10.2011

    PubMed  CAS  Google Scholar 

  115. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553. doi:10.1038/nn2015

    PubMed  CAS  Google Scholar 

  116. Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, Airas L, Bynoe MS (2008) CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 105(27):9325–9330. doi:10.1073/pnas.0711175105

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, Ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. doi:10.1038/nn.3469

    PubMed  PubMed Central  Google Scholar 

  118. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218. doi:10.1038/nn.3469

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Mitchell K, Yang HY, Berk JD, Tran JH, Iadarola MJ (2009) Monocyte chemoattractant protein-1 in the choroid plexus: a potential link between vascular pro-inflammatory mediators and the CNS during peripheral tissue inflammation. Neuroscience 158(2):885–895. doi:10.1016/j.neuroscience.2008.10.047

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Mizutani M, Pino PA, Saederup N, Charo IF, Ransohoff RM, Cardona AE (2012) The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol 188(1):29–36. doi:10.4049/jimmunol.1100421

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Monif M, Burnstock G, Williams DA (2010) Microglia: proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol 42(11):1753–1756. doi:10.1016/j.biocel.2010.06.021

    PubMed  CAS  Google Scholar 

  122. Moore CS, Rao VT, Durafourt BA, Bedell BJ, Ludwin SK, Bar-Or A, Antel JP (2013) miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann Neurol. doi:10.1002/ana.23967

    Google Scholar 

  123. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi:10.1038/nri2448

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Mott RT, Ait-Ghezala G, Town T, Mori T, Vendrame M, Zeng J, Ehrhart J, Mullan M, Tan J (2004) Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia 46(4):369–379. doi:10.1002/glia.20009

    PubMed  Google Scholar 

  125. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737. doi:10.1038/nri3073

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204(12):3037–3047. doi:10.1084/jem.20070885

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Nataf S, Strazielle N, Hatterer E, Mouchiroud G, Belin MF, Ghersi-Egea JF (2006) Rat choroid plexuses contain myeloid progenitors capable of differentiation toward macrophage or dendritic cell phenotypes. Glia 54(3):160–171. doi:10.1002/glia.20373

    PubMed  Google Scholar 

  128. Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Bruck W, Bishop D, Misgeld T, Kerschensteiner M (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17(4):495–499. doi:10.1038/nm.2324

    PubMed  CAS  Google Scholar 

  129. O’Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6(4):537–544

    PubMed  Google Scholar 

  130. Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, Lodygin D, Heckelsmiller K, Nietfeld W, Ellwart J, Klinkert WE, Lottaz C, Nosov M, Brinkmann V, Spang R, Lehrach H, Vingron M, Wekerle H, Flugel-Koch C, Flugel A (2012) T cells become licensed in the lung to enter the central nervous system. Nature 488(7413):675–679. doi:10.1038/nature11337

    PubMed  CAS  Google Scholar 

  131. Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, Rinker J, Naismith RT, Panina-Bordignon P, Passini N, Galimberti D, Scarpini E, Colonna M, Cross AH (2008) Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131:3081–3091. doi:10.1093/Brain/Awn217

    PubMed  PubMed Central  Google Scholar 

  132. Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P (2007) Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 37(5):1290–1301. doi:10.1002/eji.200636837

    PubMed  CAS  Google Scholar 

  133. Polfliet MM, van de Veerdonk F, Dopp EA, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK (2002) The role of perivascular and meningeal macrophages in experimental allergic encephalomyelitis. J Neuroimmunol 122(1–2):1–8

    PubMed  CAS  Google Scholar 

  134. Polfliet MM, Zwijnenburg PJ, van Furth AM, van der Poll T, Dopp EA, Renardel de Lavalette C, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK (2001) Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J Immunol 167(8):4644–4650

    PubMed  CAS  Google Scholar 

  135. Ponomarev ED, Shriver LP, Maresz K, Dittel BN (2005) Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 81(3):374–389. doi:10.1002/jnr.20488

    PubMed  CAS  Google Scholar 

  136. Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D, Dittel BN (2007) GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol 178(1):39–48

    PubMed  CAS  Google Scholar 

  137. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17(1):64–70. doi:10.1038/nm.2266

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Popescu BF, Lucchinetti CF (2012) Meningeal and cortical grey matter pathology in multiple sclerosis. BMC Neurol 12:11. doi:10.1186/1471-2377-12-11

    PubMed  Google Scholar 

  139. Popescu BF, Lucchinetti CF (2012) Pathology of demyelinating diseases. Annu Rev Pathol 7:185–217. doi:10.1146/annurev-pathol-011811-132443

    PubMed  CAS  Google Scholar 

  140. Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK, Raasch J, Merkler D, Detje C, Gutcher I, Mages J, Lang R, Martin R, Gold R, Becher B, Bruck W, Kalinke U (2008) Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28(5):675–686. doi:10.1016/j.immuni.2008.03.011

    PubMed  CAS  Google Scholar 

  141. Prinz M, Tay TL, Wolf Y, Jung S (2014) Microglia: unique and common features with other tissue macrophages. Acta Neuropathol. doi:10.1007/s00401-014-1267-1

    Google Scholar 

  142. Qin H, Yeh WI, De Sarno P, Holdbrooks AT, Liu Y, Muldowney MT, Reynolds SL, Yanagisawa LL, Fox TH 3rd, Park K, Harrington LE, Raman C, Benveniste EN (2012) Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc Natl Acad Sci USA 109(13):5004–5009. doi:10.1073/pnas.1117218109

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Ramaglia V, Hughes TR, Donev RM, Ruseva MM, Wu X, Huitinga I, Baas F, Neal JW, Morgan BP (2012) C3-dependent mechanism of microglial priming relevant to multiple sclerosis. Proc Natl Acad Sci USA 109(3):965–970. doi:10.1073/pnas.1111924109

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Investig 122(4):1164–1171. doi:10.1172/JCI58644

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468(7321):253–262. doi:10.1038/nature09615

    PubMed  CAS  Google Scholar 

  146. Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12(9):623–635. doi:10.1038/nri3265

    PubMed  CAS  Google Scholar 

  147. Rasouli J, Lekhraj R, Ozbalik M, Lalezari P, Casper D (2011) Brain–spleen inflammatory coupling: a literature review. Einstein J Biol Med 27(2):74–77

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Ratchford JN, Endres CJ, Hammoud DA, Pomper MG, Shiee N, McGready J, Pham DL, Calabresi PA (2012) Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol 259(6):1199–1205. doi:10.1007/s00415-011-6337-x

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10(5):514–523. doi:10.1038/ni.1716

    PubMed  CAS  Google Scholar 

  150. Reuter U, Bolay H, Jansen-Olesen I, Chiarugi A, Sanchez del Rio M, Letourneau R, Theoharides TC, Waeber C, Moskowitz MA (2001) Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain 124(Pt 12):2490–2502

    PubMed  CAS  Google Scholar 

  151. Ruckh JM, Zhao JW, Shadrach JL, van Wijngaarden P, Rao TN, Wagers AJ, Franklin RJ (2012) Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10(1):96–103. doi:10.1016/j.stem.2011.11.019

    PubMed  CAS  PubMed Central  Google Scholar 

  152. Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, Ransohoff RM, Charo IF (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS ONE 5(10):e13693. doi:10.1371/journal.pone.0013693

    PubMed  PubMed Central  Google Scholar 

  153. Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11(11):775–787. doi:10.1038/nri3086

    PubMed  CAS  Google Scholar 

  154. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90. doi:10.1126/science.1219179

    PubMed  CAS  Google Scholar 

  155. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, Jung S, Schwartz M (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6(7):e1000113. doi:10.1371/journal.pmed.1000113

    PubMed  PubMed Central  Google Scholar 

  156. Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim KW, Klein E, Kalchenko V, Bendel P, Lira SA, Jung S, Schwartz M (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38(3):555–569. doi:10.1016/j.immuni.2013.02.012

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Shechter R, Schwartz M (2013) Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer ‘if’ but ‘how’. J Pathol 229(2):332–346. doi:10.1002/path.4106

    PubMed  CAS  Google Scholar 

  158. Stadelmann C, Kerschensteiner M, Misgeld T, Bruck W, Hohlfeld R, Lassmann H (2002) BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125(Pt 1):75–85

    PubMed  Google Scholar 

  159. Staykova MA, Cowden W, Willenborg DO (2002) Macrophages and nitric oxide as the possible cellular and molecular basis for strain and gender differences in susceptibility to autoimmune central nervous system inflammation. Immunol Cell Biol 80(2):188–197. doi:10.1046/j.1440-1711.2002.01072.x

    PubMed  CAS  Google Scholar 

  160. Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, Panina Bordignon P, Meldolesi J (2009) The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem 110(1):284–294. doi:10.1111/j.1471-4159.2009.06130.x

    PubMed  CAS  Google Scholar 

  161. Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33(3):256–266

    PubMed  CAS  Google Scholar 

  162. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175(1):342–349

    PubMed  CAS  Google Scholar 

  163. Stys PK, Zamponi GW, van Minnen J, Geurts JJ (2012) Will the real multiple sclerosis please stand up? Nat Rev Neurosci 13(7):507–514. doi:10.1038/nrn3275

    PubMed  CAS  Google Scholar 

  164. Sunnemark D, Eltayeb S, Nilsson M, Wallstrom E, Lassmann H, Olsson T, Berg AL, Ericsson-Dahlstrand A (2005) CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin. J Neuroinflamm 2:17. doi:10.1186/1742-2094-2-17

    Google Scholar 

  165. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325(5940):612–616. doi:10.1126/science.1175202

    PubMed  CAS  PubMed Central  Google Scholar 

  166. Szmydynger-Chodobska J, Strazielle N, Gandy JR, Keefe TH, Zink BJ, Ghersi-Egea JF, Chodobski A (2012) Posttraumatic invasion of monocytes across the blood–cerebrospinal fluid barrier. J Cereb Blood Flow Metab 32(1):93–104. doi:10.1038/jcbfm.2011.111

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H (2007) TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 4(4):e124. doi:10.1371/journal.pmed.0040124

    PubMed  PubMed Central  Google Scholar 

  168. Takahashi K, Rochford CDP, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657. doi:10.1084/Jem.20041611

    PubMed  CAS  PubMed Central  Google Scholar 

  169. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338(5):278–285. doi:10.1056/NEJM199801293380502

    PubMed  CAS  Google Scholar 

  170. Trebst C, Sorensen TL, Kivisakk P, Cathcart MK, Hesselgesser J, Horuk R, Sellebjerg F, Lassmann H, Ransohoff RM (2001) CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Pathol 159(5):1701–1710

    PubMed  CAS  PubMed Central  Google Scholar 

  171. Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L, Hernandez M, Colonna M (2006) Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 177(6):3520–3524

    PubMed  CAS  Google Scholar 

  172. van der Laan LJ, Ruuls SR, Weber KS, Lodder IJ, Dopp EA, Dijkstra CD (1996) Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-alpha and nitric oxide. J Neuroimmunol 70(2):145–152

    PubMed  Google Scholar 

  173. Van Dyken SJ, Locksley RM (2013) Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol 31:317–343. doi:10.1146/annurev-immunol-032712-095906

    PubMed  PubMed Central  Google Scholar 

  174. van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L, Gerritsen W, Kooi EJ, Witte ME, Geurts JJ, de Vries HE, Peferoen-Baert R, van den Elsen PJ, van der Valk P, Amor S (2012) Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflamm 9:156. doi:10.1186/1742-2094-9-156

    Google Scholar 

  175. van Noort JM, van den Elsen PJ, van Horssen J, Geurts JJ, van der Valk P, Amor S (2011) Preactive multiple sclerosis lesions offer novel clues for neuroprotective therapeutic strategies. CNS Neurol Disord Drug Targets 10(1):68–81

    PubMed  Google Scholar 

  176. van Rossum D, Hilbert S, Strassenburg S, Hanisch UK, Bruck W (2008) Myelin-phagocytosing macrophages in isolated sciatic and optic nerves reveal a unique reactive phenotype. Glia 56(3):271–283. doi:10.1002/glia.20611

    PubMed  Google Scholar 

  177. van Zwam M, Huizinga R, Melief MJ, Wierenga-Wolf AF, van Meurs M, Voerman JS, Biber KP, Boddeke HW, Hopken UE, Meisel C, Meisel A, Bechmann I, Hintzen RQ, t Hart BA, Amor S, Laman JD, Boven LA (2009) Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med 87(3):273–286. doi:10.1007/s00109-008-0421-4

    PubMed  Google Scholar 

  178. van Zwam M, Wierenga-Wolf AF, Melief MJ, Schrijver B, Laman JD, Boven LA (2010) Myelin ingestion by macrophages promotes their motility and capacity to recruit myeloid cells. J Neuroimmunol 225(1–2):112–117. doi:10.1016/j.jneuroim.2010.04.021

    PubMed  Google Scholar 

  179. Vanderlocht J, Hellings N, Hendriks JJ, Vandenabeele F, Moreels M, Buntinx M, Hoekstra D, Antel JP, Stinissen P (2006) Leukemia inhibitory factor is produced by myelin-reactive T cells from multiple sclerosis patients and protects against tumor necrosis factor-alpha-induced oligodendrocyte apoptosis. J Neurosci Res 83(5):763–774. doi:10.1002/jnr.20781

    PubMed  CAS  Google Scholar 

  180. Vercellino M, Votta B, Condello C, Piacentino C, Romagnolo A, Merola A, Capello E, Mancardi GL, Mutani R, Giordana MT, Cavalla P (2008) Involvement of the choroid plexus in multiple sclerosis autoimmune inflammation: a neuropathological study. J Neuroimmunol 199(1–2):133–141. doi:10.1016/j.jneuroim.2008.04.035

    PubMed  CAS  Google Scholar 

  181. Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P, Amor S, Teunissen CE, van Horssen J, Dijkstra CD (2013) Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflamm 10:35. doi:10.1186/1742-2094-10-35

    CAS  Google Scholar 

  182. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184(1–2):53–68. doi:10.1016/j.jneuroim.2006.11.014

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L, Patarroyo JC, Stuve O, Sobel RA, Steinman L, Zamvil SS (2007) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13(8):935–943. doi:10.1038/nm1620

    PubMed  CAS  Google Scholar 

  184. Wei R, Jonakait GM (1999) Neurotrophins and the anti-inflammatory agents interleukin-4 (IL-4), IL-10, IL-11 and transforming growth factor-beta1 (TGF-beta1) down-regulate T cell costimulatory molecules B7 and CD40 on cultured rat microglia. J Neuroimmunol 95(1–2):8–18

    PubMed  CAS  Google Scholar 

  185. Williams K, Ulvestad E, Waage A, Antel JP, McLaurin J (1994) Activation of adult human derived microglia by myelin phagocytosis in vitro. J Neurosci Res 38(4):433–443. doi:10.1002/jnr.490380409

    PubMed  CAS  Google Scholar 

  186. Wolburg H, Paulus W (2010) Choroid plexus: biology and pathology. Acta Neuropathol 119(1):75–88. doi:10.1007/s00401-009-0627-8

    PubMed  Google Scholar 

  187. Wu Z, Hayashi Y, Zhang J, Nakanishi H (2007) Involvement of prostaglandin E2 released from leptomeningeal cells in increased expression of transforming growth factor-beta in glial cells and cortical neurons during systemic inflammation. J Neurosci Res 85(1):184–192. doi:10.1002/jnr.21100

    PubMed  CAS  Google Scholar 

  188. Wu Z, Zhang J, Nakanishi H (2005) Leptomeningeal cells activate microglia and astrocytes to induce IL-10 production by releasing pro-inflammatory cytokines during systemic inflammation. J Neuroimmunol 167(1–2):90–98. doi:10.1016/j.jneuroim.2005.06.025

    PubMed  CAS  Google Scholar 

  189. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455. doi:10.1038/nature12034

    PubMed  CAS  PubMed Central  Google Scholar 

  190. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91. doi:10.1016/j.immuni.2012.12.001

    PubMed  CAS  PubMed Central  Google Scholar 

  191. Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7(6):454–465. doi:10.1038/nri2093

    PubMed  CAS  Google Scholar 

  192. Zhang Z, Zhang ZY, Schittenhelm J, Wu Y, Meyermann R, Schluesener HJ (2011) Parenchymal accumulation of CD163 + macrophages/microglia in multiple sclerosis brains. J Neuroimmunol 237(1–2):73–79. doi:10.1016/j.jneuroim.2011.06.006

    PubMed  CAS  Google Scholar 

  193. Zhang Z, Zhang ZY, Wu Y, Schluesener HJ (2012) Lesional accumulation of CD163+ macrophages/microglia in rat traumatic brain injury. Brain Res 1461:102–110. doi:10.1016/j.brainres.2012.04.038

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. C. Dijkstra, Prof. Dr. J. van Horssen, and Dr. T. Vanmierlo for helpful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome J. A. Hendriks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogie, J.F.J., Stinissen, P. & Hendriks, J.J.A. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 128, 191–213 (2014). https://doi.org/10.1007/s00401-014-1310-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1310-2

Keywords

Navigation