, Volume 39, Issue 6, pp 517-531

Quantitative predictions of linear viscoelastic rheological properties of entangled polymers

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The “dual constraint” model developed by Mead, Van Dyke et al. is here extended by inclusion of “early-time” contour-length fluctuations and constraint-release Rouse relaxation, and then evaluated by comparing its predictions with literature data for over 50 different linear and star polymers. By combining the reptation model of Doi and Edwards with contour-length fluctuations and constraint release, the model provides a systematic approach to prediction of the rheological properties of polymers. The parameters are taken from the literature and used consistently for linear polymers, star polymers, and their mixtures having the same chemical compositions. In most cases, the predictions of the model appears to agree well with data for monodisperse, bidisperse, and polydisperse linear and star polymers, except at low molecular weights.