Skip to main content
Log in

Predictive/fitting capabilities of differential constitutive models for polymer melts—reduction of nonlinear parameters in the eXtended Pom-Pom model

Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A phenomenological modification of the eXtended Pom-Pom (XPP) model is proposed with the aim to reduce the number of free nonlinear parameters. The modified XPP model includes three parameters per mode in total (two linear viscoelastic parameters—linear relaxation time λ and shear modulus G, and one nonlinear parameter). The original XPP model contains five parameters (two linear viscoelastic parameters and three nonlinear ones, one nonlinear parameter participates in the second normal stress difference prediction). The predictive/fitting capabilities of the modified model are compared with the Giesekus, eXtended Pom-Pom, and modified Leonov models using various low-density PE materials in steady and transient shear and uniaxial elongational flows. It has been found that the modified model is capable of predicting/fitting the rheological properties, with the exception of the second normal stress difference, for studied LDPE materials with sufficient accuracy, including strain hardening in uniaxial elongational flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworth Publisher, Stoneham

    Google Scholar 

  2. Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Non-Newtonian Fluid Mech 11:69–109

    Article  CAS  Google Scholar 

  3. Phan-Thien N, Tanner RI (1977) A new constitutive equation derived from network theory. J Non-Newtonian Fluid Mech 2:353–365

    Article  Google Scholar 

  4. McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the Pom-Pom model. J Rheol 42:81–110

    Article  CAS  Google Scholar 

  5. Inkson NJ, McLeish TCB, Harlen OG, Groves DJ (1999) Predicting low density polyethylene melt rheology in elongational and shear flows with Pom-Pom constitutive equations. J Rheol 43:873–896

    Article  CAS  Google Scholar 

  6. Verbeeten WMH, Peters GWM, Baaijens FPT (2001) Differential constitutive equations for polymer melts: the extended Pom-Pom model. J Rheol 45:823–843

    Article  CAS  Google Scholar 

  7. Pivokonsky R, Zatloukal M, Filip P (2006) On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts. J Non-Newtonian Fluid Mech 135:58–67

    Article  CAS  Google Scholar 

  8. Zatloukal M (2003) Differential viscoelastic constitutive equations for polymer melts in steady shear and elongational flows. J Non-Newtonian Fluid Mech 11:209–227

    Article  Google Scholar 

  9. Tanner RI, Nasseri S (2003) Simple constitutive models for linear and branched polymers. J Non-Newtonian Fluid Mech 116:1–17

    Article  CAS  Google Scholar 

  10. Tanner RI (2006) On the congruence of some network and pom-pom models. Korea-Aust Rheol J 18:9–14

    Google Scholar 

  11. Leonov AI (1999) Constitutive equations for viscoelastic liquids: formulation, analysis and comparison with data. In: Siginer DA, de Kee D, Chhabra RP (eds) Advances in the flow and rheology of non-Newtonian fluids. Part A. Elsevier, Amsterdam, pp 519–575

    Chapter  Google Scholar 

  12. Liang J-Z, Zhong L (2013) Characterization of elongation viscosity for polyethylene melts. Colloid Polym Sci 291:1595–1599

    Article  CAS  Google Scholar 

  13. Zatloukal M (2010) A simple phenomenological non-Newtonian fluid model. J Non-Newtonian Fluid Mech 165:592–595

    Article  CAS  Google Scholar 

  14. Phan-Thien N, Safari-Ardi M, Morales-Patifio A (1997) Oscillatory and simple shear flows of a flour-water dough: a constitutive model. Rheol Acta 36:38–48

    Article  CAS  Google Scholar 

  15. Fuchs M, Ballauff M (2005) Nonlinear rheology of dense colloidal dispersions: a phenomenological model and its connection to mode coupling theory. Physicochem Eng Asp 270–271:232–238

    Article  Google Scholar 

  16. Verbeeten MH (2001) Computational polymer melt rheology. Ph. D. Thesis 134, TU Eindhoven, The Netherlands

  17. Stadler FJ, Kaschta J, Münstedt H, Becker F, Buback M (2009) Influence of molar mass distribution and long-chain branching on strain hardening of low density polyethylene. Rheol Acta 48:479–490

    Article  CAS  Google Scholar 

  18. Shampine LF, Reichelt MW (1997) The MATLAB ODE suite. SIAM J Sci Comp 18:1–22

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Grant Agency CR for the financial support of Grant Project No.103/09/2066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pivokonsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivokonsky, R., Filip, P. Predictive/fitting capabilities of differential constitutive models for polymer melts—reduction of nonlinear parameters in the eXtended Pom-Pom model. Colloid Polym Sci 292, 2753–2763 (2014). https://doi.org/10.1007/s00396-014-3308-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3308-7

Keywords

Navigation