Skip to main content
Log in

Self-assembled liposomes from electrosprayed polymer-based microparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Composite poly(N-isopropylacrylamide) (PNIPAAm)/phosphatidylcholine (PC) microparticles were prepared by electrospraying. PC-based liposomes were subsequently generated upon the addition of water. The microparticles have an average diameter of ca. 1 μm, while the liposomes produced were found to have much smaller diameters of ca. 225–280 nm. The liposomes had zeta potentials of −44 to −50 mV, consistent with the formation of a stable suspension. Upon heat treatment, the liposomes exhibit phase transitions due to the influence of PNIPAAm. The liposomes containing 33 % PC have a phase transition temperature of approximately 36 °C, close to physiological conditions. The model drug ketoprofen could be loaded into electrosprayed microparticles and subsequently incorporated into self-assembled liposomes, with an entrapment efficiency for the latter process of ca. 75 %. Sustained drug release regulated by temperature was observed from these drug-loaded materials. At 25 °C, only 45 % of the total drug loading was released after 110 hours, while at 37 °C drug release approached 90 % over the same time period. The self-assembled liposomes reported here, therefore, have great potential as drug delivery devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu D-G, Williams GR, Yang J-H, Wang X, Yang J-M, Li X-Y (2011) Solid lipid nanoparticles self-assembled from electrosprayed polymer-based microparticles. J Mater Chem 21(40):15957–15961. doi:10.1039/c1jm12720a

    Article  CAS  Google Scholar 

  2. Yuan W, Lu Z, Li CM (2012) Charged drug delivery by ultrafast exponentially grown weak polyelectrolyte multilayers: amphoteric properties, ultrahigh loading capacity and pH-responsiveness. J Mater Chem 22(18):9351–9357. doi:10.1039/c2jm30834g

    Article  CAS  Google Scholar 

  3. Yuan W, Lu Z, Li CM (2011) Controllably layer-by-layer self-assembled polyelectrolytes/nanoparticle blend hollow capsules and their unique properties. J Mater Chem 21(13):5148–5155. doi:10.1039/c0jm03925j

    Article  CAS  Google Scholar 

  4. Yuan W, Lu Z, Wang H, Li CM (2012) Stimuli-free reversible and controllable loading and release of proteins under physiological conditions by exponentially growing nanoporous multilayered structure. Adv Funct Mater 22(9):1932–1939. doi:10.1002/adfm.201102308

  5. Lu T, Wang Z, Ma Y, Zhang Y, Chen T (2012) Influence of polymer size, liposomal composition, surface charge, and temperature on the permeability of pH-sensitive liposomes containing lipid-anchored poly(2-ethylacrylic acid). Int J Nanomedicine 7:4917–4926. doi:10.2147/ijn.s35576

    Article  CAS  Google Scholar 

  6. Yu D-G, Branford-White C, Williams GR, Bligh SWA, White K, Zhu L-M, Chatterton NP (2011) Self-assembled liposomes from amphiphilic electrospun nanofibers. Soft Matter 7(18):8239–8247. doi:10.1039/c1sm05961k

    Article  CAS  Google Scholar 

  7. Yan-Hua L, Xing-Long W, Jee-Hoon K, Sen X, Jing S, Yang Y, Jong-Sook L, Yu-Guo G (2013) A novel polymer electrolyte with improved high-temperature-tolerance up to 170°C for high-temperature lithium-ion batteries. J Power Sources 244:234–239. doi:10.1016/j.jpowsour.2013.01.148

    Article  Google Scholar 

  8. Wu GM, Lin SJ, Yang CC (2013) High performance composite solid polymer electrolyte systems for electrochemical cells. J Power Sources 244:287–293. doi:10.1016/j.jpowsour.2013.01.044

    Article  CAS  Google Scholar 

  9. Permpool T, Supaphol P, Sirivat A, Wannatong L (2012) Polydiphenylamine–polyethylene oxide blends as methanol sensing materials. Adv Polym Technol 31(4):401–413. doi:10.1002/adv.20263

    Article  CAS  Google Scholar 

  10. Xie JW, Marijnissen JCM, Wang CH (2006) Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials 27(17):3321–3332. doi:10.1016/j.biomaterials.2006.01.034

    Article  CAS  Google Scholar 

  11. Rivero PJ, Urrutia A, Goicoechea J, Rodriguez Y, Corres JM, Arregui FJ, Matias IR (2012) An antibacterial submicron fiber mat with in situ synthesized silver nanoparticles. J Appl Polym Sci 126(4):1228–1235. doi:10.1002/app.36886

    Article  CAS  Google Scholar 

  12. Yu D-G, Yang J-M, Branford-White C, Lu P, Zhang L, Zhu L-M (2010) Third generation solid dispersions of ferulic acid in electrospun composite nanofibers. Int J Pharm 400(1–2):158–164. doi:10.1016/j.ijpharm.2010.08.010

    Article  CAS  Google Scholar 

  13. Yu D-G, Yang J-H, Wang X, Tian F (2012) Liposomes self-assembled from electrosprayed composite microparticles. Nanotechnology 23(10):105606–105606

    Article  Google Scholar 

  14. Siddikuzzaman VMGB (2013) Antioxidant potential of all-trans retinoic acid (ATRA) and enhanced activity of liposome encapsulated ATRA against inflammation and tumor-directed angiogenesis. Immunopharmacol Immunotoxicol 35(1):164–173. doi:10.3109/08923973.2012.736520

  15. Li X, Shi X, Jin Y, Ding F, Du Y (2013) Controllable antioxidative xylan–chitosan Maillard reaction products used for lipid food storage. Carbohydr Polym 91(1):428–433. doi:10.1016/j.carbpol.2012.08.052

    Article  CAS  Google Scholar 

  16. Kono K, Nakai R, Morimoto K, Takagishi T (1999) Temperature-dependent interaction of thermo-sensitive polymer-modified liposomes with CV1 cells. Febs Letters 456(2):306–310. doi:10.1016/s0014-5793(99)00975-8

    Article  CAS  Google Scholar 

  17. Kono K, Takagishi T (2004) Temperature-sensitive liposomes. In: Duzgunes N (ed) Liposomes, Pt D, vol 387. Methods in Enzymol pp 73-82

  18. Zhao XBB, Lee RJ (2004) Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv Drug Deliv Rev 56(8):1193–1204. doi:10.1016/j.addr.2004.01.005

    Article  CAS  Google Scholar 

  19. Kong G, Anyarambhatla G, Petros WP, Braun RD, Colvin OM, Needham D, Dewhirst MW (2000) Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res 60(24):6950–6957

    CAS  Google Scholar 

  20. Turner DC, Moshkelani D, Shemesh CS, Luc D, Zhang H (2012) Near-infrared image-guided delivery and controlled release using optimized thermosensitive liposomes. Pharm Res 29(8):2092–2103. doi:10.1007/s11095-012-0738-0

    Article  CAS  Google Scholar 

  21. Zhao XB, Lee RJ (2004) Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv Drug Delivery Rev 56:1193–1204

    Article  CAS  Google Scholar 

  22. Jain AK, Agarwal A, Agrawal H, Agrawal GP (2012) Double-liposome-based dual-drug delivery system as vectors for effective management of peptic ulcer. J Liposome Res 22(3):205–214. doi:10.3109/08982104.2012.655284

    Article  CAS  Google Scholar 

  23. Buckiova D, Ranjan S, Newman TA, Johnston AH, Sood R, Kinnunen PKJ, Popelar J, Chumak T, Syka J (2012) Minimally invasive drug delivery to the cochlea through application of nanoparticles to the round window membrane. Nanomedicine 7(9):1339–1354. doi:10.2217/nnm.12.5

    Article  CAS  Google Scholar 

  24. Yao X, Liu C, Zhang P (2012) Optimization of the multiple emulsion formulation of gentiopicroside liposome using response surface methodology. J Beijing Univ Chem Technol Nat Sci Ed 39(2):68–73

  25. Decker C, Schubert H, May S, Fahr A (2013) Pharmacokinetics of temoporfin-loaded liposome formulations: correlation of liposome and temoporfin blood concentration. J Control Release Off J Control Release Soc 166(3):277–285. doi:10.1016/j.jconrel.2013.01.005

    Article  CAS  Google Scholar 

  26. Chakraborty S, Liao IC, Adler A, Leong KW (2009) Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev 61(12):1043–1054. doi:10.1016/j.addr.2009.07.013

    Article  CAS  Google Scholar 

  27. Al-Jamal WT, Al-Ahmady ZS, Kostarelos K (2012) Pharmacokinetics & tissue distribution of temperature-sensitive liposomal doxorubicin in tumor-bearing mice triggered with mild hyperthermia. Biomaterials 33(18):4608–4617. doi:10.1016/j.biomaterials.2012.03.018

    Article  CAS  Google Scholar 

  28. Ta T, Convertine AJ, Reyes CR, Stayton PS, Porter TM (2010) Thermosensitive Liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin. Biomacromolecules 11(8):1915–1920. doi:10.1021/bm1004993

    Article  CAS  Google Scholar 

  29. Zhu PW, Napper DH (1996) Coil-to-globule type transitions and swelling of poly(N-isopropylacrylamide) and poly(acrylamide) at latex interfaces in alcohol–water mixtures. J Colloid Interface Sci 177(2):343–352. doi:10.1006/jcis.1996.0042

    Article  CAS  Google Scholar 

  30. Tokuhiro T, Amiya T, Mamada A, Tanaka T (1991) NMR study of poly(N-isopropylacrylamide) gels near phase transition. Macromolecules 24(10):2936–2943. doi:10.1021/ma00010a046

    Article  CAS  Google Scholar 

  31. Wang N, Zhao Y, Jiang L (2008) Low-cost, thermoresponsive wettability of surfaces: poly(N-isopropylacrylamide)/polystyrene composite films prepared by electrospinning. Macromol Rapid Commun 29(6):485–489. doi:10.1002/marc.200700785

    Article  Google Scholar 

  32. Alf ME, Hatton AT, Gleason KK (2011) Novel N-isopropylacrylamide based polymer architecture for faster LCST transition kinetics. Polymer 52(20):4429–4434

    Article  CAS  Google Scholar 

  33. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222

    Article  CAS  Google Scholar 

  34. Wang N, Zhao Y, Jiang L (2008) Low-cost, thermoresponsive wettability of surfaces: poly(N-isopropylacrylamide)/polystyrene composite films prepared by electrospinning. Macromol Rapid Commun 29:485–489

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was received from the National Natural Science Foundation of China (No. 21303014). This investigation was supported by the UK-China Joint Laboratory for Therapeutic Textiles based at Donghua University, the State Key Laboratory for the Modification of Chemical Fibers and Polymer Materials, the Key Laboratory of Science & Technology of Eco-Textiles, and the Fundamental Research Funds for the Central Universities, all funded by the Ministry of Education, PR China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Quan or Li-min Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Cc., Li, Hy., Williams, G.R. et al. Self-assembled liposomes from electrosprayed polymer-based microparticles. Colloid Polym Sci 292, 2325–2334 (2014). https://doi.org/10.1007/s00396-014-3222-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3222-z

Keywords

Navigation