, Volume 292, Issue 3, pp 771-776
Date: 13 Feb 2014

Electrochemical decomposition of layer-by-layer thin films composed of TEMPO-modified poly(acrylic acid) and poly(ethyleneimine)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The decomposition of layer-by-layer (LbL) thin films composed of 2,2,6,6-tetramethylpiperidine-1-oxyl free radical-appended poly(acrylic acid) (TEMPO-PAA) and poly(ethylenimine) (PEI) was studied by using a quartz crystal microbalance (QCM) and cyclic voltammetry. The electrode potential of the (PEI/TEMPO-PAA)4/PEI film-coated Au resonator was scanned from +0.2 to +0.8 V vs Ag/AgCl. The CV showed that the oxidation peak current decreased as the number of scans increased. The change in the resonance frequency of the QCM increased after electrolysis, indicating that the film was decomposed by electrolysis. The positive charges originating from the oxoammonium ions probably destabilized the (PEI/TEMPO-PAA)4/PEI film. Furthermore, the release of 5,10,15,20-tetraphenyl-21H,23H-porphine tetrasulfonic acid (TPPS) from TPPS-loaded (PEI/TEMPO-PAA)4/PEI-coated ITO electrodes was investigated. TPPS was released at electrode potentials greater than +0.6 V by the decomposition of the film. The results suggest that TEMPO-PAA/PEI LbL films are suitable for electrochemically controlled drug delivery systems.