, Volume 102, Issue 2, pp 101-114
Date: 05 Jan 2007

Cardiac regeneration by resident stem and progenitor cells in the adult heart

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Two main pieces of data have created a new field in cardiac research. First, the traditional view on the heart as a postmitotic organ has been challenged by the finding of small dividing cells in the heart expressing cardiac contractile proteins with stem cell properties and, second, cellular therapy of the diseased heart using a variety of different cells has shown encouraging effects on cardiac function. These findings immediately raise questions like "what is the identity and origin of the cardiac progenitor cells?","which molecular factors are involved in their mobilization and differentiation?", and "can these cells repair the damaged heart?" This review will address the state of current answers to these questions.

Emerging evidence suggests that several subpopulations of cardiac stem or progenitor cells (CPCs) reside within the adult heart. CPCs with the ability to differentiate into all the constituent cells in the adult heart including cardiac myocytes, vascular smooth muscle and endothelial cells have been identified. Valuable knowledge has been obtained from the large number of animal studies and a number of small clinical trials that have utilized a variety of adult stem cells for regenerating infarcted hearts. However, contradictory reports on the regenerative potential of the CPCs exist, and the mechanisms behind the reported hemodynamic effects are intensely debated. Besides directly replenishing cardiac tissue, CPCs could also function by stimulating angiogenesis and improving survival of existing cells by secretion of paracrine factors. With this review we suggest that a better understanding of CPC biology will be pivotal for progressing therapeutic cardiac regeneration. This includes an extended knowledge of the molecular mechanisms behind their mobilization, differentiation, survival and integration in the myocardium.