Skip to main content

Advertisement

Log in

Effects of low-glycemic-index diets in pregnancy on maternal and newborn outcomes in pregnant women: a meta-analysis of randomized controlled trials

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Maternal diet with a high glycemic index (GI) is associated with fetal overgrowth and higher infant body adiposity. Effects of low-GI diet on maternal and newborn outcomes have been assessed in both healthy pregnancy and gestational diabetes mellitus, but the results remain inconclusive. This meta-analysis aimed to examine the effects of low-GI diets on maternal and newborn outcomes.

Methods

PubMed, Clinical Trials, and Cochrane Library databases were searched for relevant randomized trials up to January 2016. Random- or fixed-effects models were used to calculate combined treatment effects.

Results

A total of 11 trials involving 1985 women were eligible for analysis. This meta-analysis assessed 7 maternal and 11 newborn outcomes. Of these, gestational weight gain (GWG), fasting blood glucose (FBG), newborn birth weight, ponderal index (PI), proportion of macrosomia, and large for gestational age (LGA) were investigated in more than 8 trials. Compared with control diets, low-GI diets significantly reduced FBG (weight mean differences (WMD) = −0.18 mmol/L, 95 % CI: −0.33, −0.02), 2-h postprandial glucose level (WMD = −0.33 mmol/L, 95 % CI: −0.54, −0.12), and the proportion of LGA (RR = 0.52, 95 % CI: 0.31, 0.89). A lower GWG (WMD = −0.69 kg, 95 % CI: −1.74, 0.36) and birth weight (WMD = −0.10 kg, 95 % CI: −0.23, 0.03) were also observed without significant differences. Heterogeneity was observed in the GWG, FBG, and birth weight analyses. Low-GI diets did not affect other maternal and newborn outcomes. In subgroup and sensitivity analyses, the intervention effects of low GI on GWG and FBG varied.

Conclusions

Low-GI diets may have beneficial effects on maternal outcomes for those at risk of developing high glucose levels, without causing adverse effects on newborn outcomes. However, results should be interpreted with caution because of the evidence of heterogeneity and limited number of studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Butte NF (2000) Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr 71:1256s–1261s

    Article  CAS  Google Scholar 

  2. Jovanovicpeterson L, Peterson CM, Reed GF, Metzger BE, Mills JL, Knopp RH, Aarons JH (1991) Maternal postprandial glucose-levels and infant birth-weight: the diabetes in early-pregnancy study. Am J Obstet Gynecol 164:103–111

    Article  CAS  Google Scholar 

  3. Jenkins DJA, Wolever TMS, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV (1981) Glycemic index of foods: a physiological-basis for carbohydrate exchange. Am J Clin Nutr 34:362–366

    Article  CAS  Google Scholar 

  4. Kaufmann RC, Mcbride P, Amankwah KS, Huffman DG (1992) The effect of minor degrees of glucose-intolerance on the incidence of neonatal macrosomia. Obstet Gynecol 80:97–101

    CAS  Google Scholar 

  5. Clapp JF (1998) Effect of dietary carbohydrate on the glucose and insulin response to mixed caloric intake and exercise in both nonpregnant and pregnant women. Diabetes Care 21:B107–B112

    Google Scholar 

  6. Louie JC, Brand-Miller JC, Markovic TP, Ross GP, Moses RG (2010) Glycemic index and pregnancy: a systematic literature review. J Nutr Metab 2010:282464

    Article  Google Scholar 

  7. Viana LV, Gross JL, Azevedo MJ (2014) Dietary intervention in patients with gestational diabetes mellitus: a systematic review and meta-analysis of randomized clinical trials on maternal and newborn outcomes. Diabetes Care 37:3345–3355

    Article  Google Scholar 

  8. Markovic TP, Muirhead R, Overs S, Ross GP, Louie JCY, Kizirian N, Denyer G, Petocz P, Hyett J, Brand-Miller JC (2016) Randomized controlled trial investigating the effects of a low-glycemic index diet on pregnancy outcomes in women at high risk of gestational diabetes mellitus: the GI Baby 3 study. Diabetes Care 39:31–38

    Article  CAS  Google Scholar 

  9. Ma WJ, Huang ZH, Huang BX, Qi BH, Zhang YJ, Xiao BX, Li YH, Chen L, Zhu HL (2015) Intensive low-glycaemic-load dietary intervention for the management of glycaemia and serum lipids among women with gestational diabetes: a randomized control trial. Public Health Nutr 18:1506–1513

    Article  Google Scholar 

  10. Moses RG, Casey SA, Quinn EG, Cleary JM, Tapsell LC, Milosavljevic M, Petocz P, Brand-Miller JC (2014) Pregnancy and glycemic index outcomes study: effects of low glycemic index compared with conventional dietary advice on selected pregnancy outcomes(1–3). Am J Clin Nutr 99:517–523

    Article  CAS  Google Scholar 

  11. Perichart-Perera O, Balas-Nakash M, Rodriguez-Cano A, Legorreta-Legorreta J, Parra-Covarrubias A, Vadillo-Ortega F (2012) Low glycemic index carbohydrates versus all types of carbohydrates for treating diabetes in pregnancy: a randomized clinical trial to evaluate the effect of glycemic control. Int J Endocrinol 2012:296017

    Article  Google Scholar 

  12. Walsh JM, McGowan CA, Mahony R, Foley ME, McAuliffe FM (2012) Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): randomised control trial. BMJ 345:e5605–e5613

    Article  Google Scholar 

  13. Grant SM, Wolever TMS, O’Connor DL, Nisenbaum R, Josse RG (2011) Effect of a low glycaemic index diet on blood glucose in women with gestational hyperglycaemia. Diabetes Res Clin Pract 91:15–22

    Article  CAS  Google Scholar 

  14. Louie JCY, Markovic TP, Perera N, Foote D, Petocz P, Ross GP, Brand-Miller JC (2011) A randomized controlled trial investigating the effects of a low-glycemic index diet on pregnancy outcomes in gestational diabetes mellitus. Diabetes Care 34:2341–2346

    Article  CAS  Google Scholar 

  15. Rhodes ET, Pawlak DB, Takoudes TC, Ebbeling CB, Feldman HA, Lovesky MM, Cooke EA, Leidig MM, Ludwig DS (2010) Effects of a low-glycemic load diet in overweight and obese pregnant women a pilot randomized controlled trial. Am J Clin Nutr 92:1306–1315

    Article  CAS  Google Scholar 

  16. Moses RG, Barker M, Winter M, Petocz P, Brand-Miller JC (2009) Can a low-glycemic index diet reduce the need for insulin in gestational diabetes mellitus? A randomized trial. Diabetes Care 32:996–1000

    Article  CAS  Google Scholar 

  17. Moses RG, Luebcke M, Davis WS, Coleman KJ, Tapsell LC, Petocz P, Brand-Miller JC (2006) Effect of a low-glycemic-index diet during pregnancy on obstetric outcomes. Am J Clin Nutr 84:807–812

    Article  CAS  Google Scholar 

  18. Clapp JF (1997) Diet, exercise, and feto-placental growth. Arch Gynecol Obstet 260:101–108

    Article  Google Scholar 

  19. Moher D, Liberati A, Tetzlaff J, Altman DG (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8:336–341

    Article  Google Scholar 

  20. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, McQuay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12

    Article  CAS  Google Scholar 

  21. Higgins JPT, Green S (eds) (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0. [Updated March 2011]. The Cochrane Collaboration

  22. Follmann D, Elliott P, Suh I, Cutler J (1992) Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol 45:769–773

    Article  CAS  Google Scholar 

  23. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  Google Scholar 

  24. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  Google Scholar 

  25. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  Google Scholar 

  26. McGowan CA, Walsh JM, Byrne J, Curran S, McAuliffe FM (2013) The influence of a low glycemic index dietary intervention on maternal dietary intake, glycemic index and gestational weight gain during pregnancy: a randomized controlled trial. Nutr J 12:140–148

    Article  Google Scholar 

  27. Clapp JF (2002) Maternal carbohydrate intake and pregnancy outcome. Proc Nutr Soc 61:45–50

    Article  Google Scholar 

  28. Horan MK, McGowan CA, Gibney ER, Donnelly JM, McAuliffe FM (2014) Maternal low glycaemic index diet, fat intake and postprandial glucose influences neonatal adiposity: secondary analysis from the ROLO study. Nutr J 13:78

    Article  Google Scholar 

  29. Oostdam N, van Poppel MNM, Wouters MGAJ, van Mechelen W (2011) Interventions for preventing gestational diabetes mellitus: a systematic review and meta-analysis. J Womens Health 20:1551–1563

    Article  Google Scholar 

  30. Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PM, Damm P, Dyer AR, de Leiva A, Hod M, Kitzmiller JL, Lowe LP, McIntyre HD, Oats JJN, Omori Y, Schmidt MI, Balaji V, Callaghan WM, Chen R, Conway D, Corcoy R, Coustan DR, Dabelea D, Fagen C, Feig DS, Ferrara A, Geil P, Hadden DR, Hillier TA, Hiramatsu Y, Houde G, Inturissi M, Jang HC, Jovanovic L, Kautsky-Willer A, Kirkman MS, Kjos SL, Landon MB, Lapolla A, Lowe J, Mathiesen HER, Mello G, Meltzer SJ, Moore TR, Nolan CJ, Ovesen P, Pettitt P, Reader DM, Rowan JA, Sacks DA, Schaefer-Graf U, Seshiah V, Simmons D, Sugiyama T, Trimble ER, Varma S, Yang HX, Yasuhi I, Pregnancy IAD (2010) International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33:676–682

    Article  Google Scholar 

  31. Sung JF, Kogut EA, Lee HC, Mannan JL, Navabi K, Taslimi MM, El-Sayed YY (2015) Correlation of continuous glucose monitoring profiles with pregnancy outcomes in nondiabetic women. Am J Perinatol 32:461–467

    Google Scholar 

  32. Yu F, Lv LJ, Liang ZJ, Wang Y, Wen JY, Lin XH, Zhou YH, Mai CY, Niu JM (2014) Continuous glucose monitoring effects on maternal glycemic control and pregnancy outcomes in patients with gestational diabetes mellitus: a prospective cohort study. J Clin Endocr Metab 99:4674–4682

    Article  CAS  Google Scholar 

  33. Hu ZG, Tan RS, Jin D, Li W, Zhou XY (2014) A low glycemic index staple diet reduces postprandial glucose values in asian women with gestational diabetes mellitus. J Invest Med 62:975–979

    Article  CAS  Google Scholar 

  34. Brunner S, Stecher L, Ziebarth S, Nehring I, Rifas-Shiman S, Sommer C, Hauner H, von Kries R (2015) Excessive gestational weight gain prior to glucose screening and the risk of gestational diabetes: a meta-analysis. Diabetologia 58:2229–2237

    Article  Google Scholar 

  35. Lee JM, Kim MJ, Kim MY, Han JY, Ahn HK, Choi JS, Chung JH, Lee SW, Han YJ, Kwak DW, Ryu HM, Kim MH (2014) Gestational weight gain is an important risk factor for excessive fetal growth. Obstet Gynecol Sci 57:442–447

    Article  Google Scholar 

  36. Zilko CEM, Rehkopf D, Abrams B (2010) Association of maternal gestational weight gain with short- and long-term maternal and child health outcomes. Am J Obstet Gynecol 202:574 e1–574 e8

    Article  Google Scholar 

  37. Mourtakos SP, Tambalis KD, Panagiotakos DB, Antonogeorgos G, Alexi CD, Georgoulis M, Saade G, Sidossis LS (2016) Association between gestational weight gain and risk of obesity in preadolescence: a longitudinal study (1997–2007) of 5125 children in Greece. J Hum Nutr Diet. doi:10.1111/jhn.12398

    Google Scholar 

  38. Sridhar SB, Darbinian J, Ehrlich SF, Markman MA, Gunderson EP, Ferrara A, Hedderson MM (2014) Maternal gestational weight gain and offspring risk for childhood overweight or obesity. Am J Obstet Gynecol 211:259e1–259e8

    Article  Google Scholar 

  39. Thomas DE, Elliott EJ, Baur L (2007) Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst Rev 18:CD005105

    Google Scholar 

  40. Shyam S, Arshad F, Ghani RA, Wahab NA, Safii NS, Nisak MYB, Chinna K, Kamaruddin NA (2013) Low glycaemic index diets improve glucose tolerance and body weight in women with previous history of gestational diabetes: a 6 months randomized trial. Nutr J 12:68–79

    Article  CAS  Google Scholar 

  41. Okubo H, Crozier SR, Harvey NC, Godfrey KM, Inskip HM, Cooper C, Robinson SM (2014) Maternal dietary glycemic index and glycemic load in early pregnancy are associated with offspring adiposity in childhood: the Southampton Women’s survey. Am J Clin Nutr 100:676–683

    Article  CAS  Google Scholar 

  42. Zhang C, Liu S, Solomon CG, Hu FB (2006) Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care 29:2223–2230

    Article  CAS  Google Scholar 

  43. Scholl TO, Chen X, Khoo CS, Lenders C (2004) The dietary glycemic index during pregnancy: influence on infant birth weight, fetal growth, and biomarkers of carbohydrate metabolism. Am J Epidemiol 159:467–474

    Article  Google Scholar 

  44. Viguiliouk E, Kendall CW, Blanco Mejia S, Cozma AI, Ha V, Mirrahimi A, Jayalath VH, Augustin LS, Chiavaroli L, Leiter LA, de Souza RJ, Jenkins DJ, Sievenpiper JL (2014) Effect of tree nuts on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled dietary trials. PLoS ONE 9:e103376

    Article  Google Scholar 

  45. Bao W, Bowers K, Tobias DK, Hu FB, Zhang C (2013) Prepregnancy dietary protein intake, major dietary protein sources, and the risk of gestational diabetes mellitus: a prospective cohort study. Diabetes Care 36:2001–2008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Wang or Li-Qiang Qin.

Ethics declarations

Conflict of interest

Irma Silva-Zolezzi is employee of Nestlé Research Center, Lausanne. Gerard Vinyes Parés and Yi Wang are employees of Nestlé Research Center Beijing. The authors state that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Han, S., Chen, GC. et al. Effects of low-glycemic-index diets in pregnancy on maternal and newborn outcomes in pregnant women: a meta-analysis of randomized controlled trials. Eur J Nutr 57, 167–177 (2018). https://doi.org/10.1007/s00394-016-1306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1306-x

Keywords

Navigation