Skip to main content
Log in

Stimulatory effect of inulin on intestinal absorption of calcium and magnesium in rats is modulated by dietary calcium intakes

Short– and long–term balance studies

  • ORIGINAL CONTRIBUTION
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Summary

Previous studies have shown that short–term intake of fermentable oligosaccharides (OS), including inulin, can increase mineral intestinal absorption in humans and animals. While the stimulatory effect of these substances on intestinal magnesium (Mg) absorption is generally high and consistent, their effect on calcium (Ca) seems to depend on experimental conditions, particularly the duration of fermentable OS intake. The aim of this study was to determine how the short– and long–term dietary Ca intake may modulate the effect of inulin on Ca absorption. Sixty male Wistar rats, weighing 275 g, were randomized into two groups to receive or not 10% of inulin in their diet. Each group was divided into three sub–groups to receive one of the following dietary Ca levels 0.25%, 0.50% and 0.75% in their food. The animals were fed fresh food and water ad libitum for 40 days. Apparent intestinal absorptions of Ca and Mg were determined at D13 and D36 of the experiment. As expected, inulin feeding increased Ca and Mg absorption in both periods at all dietary Ca levels. However, the effect of inulin on intestinal Ca absorption was dependent on dietary Ca levels and on experiment duration. In the short–term period, the inulin effect was prominent in the groups receiving high or low Ca levels, but in long–term period inulin improved intestinal Ca absorption much more in the group receiving the low Ca level. In addition, efficiency of intestinal absorption of Ca and Mg (%) was negatively affected by Ca intake levels. These results show that the beneficial effect of inulin on intestinal Ca absorption may be more marked in cases where the Ca intake is low or where the organism’s Ca requirement is high. Further studies are required to confirm these results in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ca:

calcium

Mg:

Magnesium

OS:

oligosaccharides

SCFA:

Short–chain fatty acid

References

  1. Jackson KG, Taylor GR, Clohessy AM, Williams CM (1999) The effect of the daily intake of inulin on fasting lipid, insulin and glucose concentrations in middle-aged men and women. Br J Nutr 82(1):23–30

    PubMed  Google Scholar 

  2. Kaur N, Gupta AK (2002) Applications of inulin and oligofructose in health and nutrition. Review. J Biosci 27(7):703–714

    PubMed  Google Scholar 

  3. Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108(4):975–982

    PubMed  Google Scholar 

  4. Delzenne N, Aertssens J, Verplaetse H, Roccaro M, Roberfroid M (1995) Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci 57(17):1579–1587

    Article  PubMed  Google Scholar 

  5. Ohta A, Ohtsuki M, Baba S, Adachi T, Sakata T, Sakaguchi EI (1995) Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. J Nutr 125(9):2417–2424

    PubMed  Google Scholar 

  6. Younes H, Demigné C, Rémésy C (1996) Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat. Br J Nutr 75(2):301–314

    Article  PubMed  Google Scholar 

  7. Levrat MA, Rémésy C, Demigné C (1991) High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr 121(11):1730–1737

    PubMed  Google Scholar 

  8. Lutz T, Scharrer E (1991) Effect of short-chain fatty acids on calcium absorption by the rat colon. Exp Physiol 76(4):615–618

    PubMed  Google Scholar 

  9. Trinidad TP, Wolever TM, Thompson LU (1999) Effects of calcium concentration, acetate,and propionate on calcium absorption in the human distal colon. Nutrition 15(7–8):529–533

    Article  PubMed  Google Scholar 

  10. Topping DL, Clifton PM (2001) Shortchain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Review. Physiol Rev 81(3):1031–1064

    PubMed  Google Scholar 

  11. Remesy C, Levrat MA, Gamet L, Demigne C (1993) Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. Am J Physiol 264(5 Pt 1):G855–G862

    PubMed  Google Scholar 

  12. Coudray C, Tressol JC, Gueux E, Rayssiguier Y (2003) Effects of inulintype fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur J Nutr 42(2):91–98

    Article  PubMed  Google Scholar 

  13. Coudray C, Demigne C, Rayssiguier Y (2003) Effects of dietary fibers on magnesium absorption in animals and humans. Review. J Nutr 133(1):1–4

    PubMed  Google Scholar 

  14. Demigne C, Remesy C, Rayssiguier Y (1980) Effect of fermentable carbohydrates on volatile fatty acids, ammonia and mineral absorption in the rat caecum. Reprod Nutr Dev 20(4B):1351–1359

    PubMed  Google Scholar 

  15. Coudray C, Bellanger J, Castiglia-Delavaud C, Rémésy C, Vermorel M, Rayssiguier Y (1997) Effect of soluble and insoluble dietary fiber supplementation in healthy young men: apparent absorption and balance of calcium, magnesium, iron and zinc. Eur J Clin Nutr 51(6):375–380

    PubMed  Google Scholar 

  16. Lopez HW,Coudray C, Levrat-Verny M, Feillet-Coudray C, Demigne C, Remesy C (2000) Fructooligosaccharides enhance mineral apparent absorption and counteract the deleterious effects of phytic acid on mineral homeostasis in rats. J Nutr Biochem 11(10):500–508

    Article  PubMed  Google Scholar 

  17. Younes H, Coudray C, Bellanger J, Demigne C, Rayssiguier Y, Remesy C (2001) Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br J Nutr 86(4):479–485

    PubMed  Google Scholar 

  18. Scholz-Ahrens KE, Schaafsma G, van den Heuvel EG, Schrezenmeir J (2001) Effects of prebiotics on mineral metabolism. Review. Am J Clin Nutr 73(2 Suppl):459S–464S

    PubMed  Google Scholar 

  19. Cashman K (2003) Prebiotics and calcium bioavailability, Review. Curr Issues Intest Microbiol 4(1):21–32

    PubMed  Google Scholar 

  20. Chonan O, Matsumoto K,Watanuki M (1995) Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem 59(2): 236–239

    PubMed  Google Scholar 

  21. Ohta A, Ohtsuki M, Baba S, Hirayama M, Adachi T (1998) Comparison of the nutritional effects of fructo-oligosaccharides of different sugar chain length in rats. Nutr Res 18(1):109–120

    Article  Google Scholar 

  22. Ohta A, Motohashi Y, Ohtsuki M, Hirayama M, Adachi T, Sakuma K (1998) Dietary fructooligosaccharides change the concentration of calbindin-D9k differently in the mucosa of the small and large intestine of rats. J Nutr 128(6):934–939

    PubMed  Google Scholar 

  23. Chonan O,Watanuki M (1996) The effect of 6’-galactooligosaccharides on bone mineralization of rats adapted to different levels of dietary calcium. Int J Vitam Nutr Res 66(3):244–249

    PubMed  Google Scholar 

  24. Heaney RP, Weaver CM, Fitzsimmons ML (1990) Influence of calcium load on absorption fraction. J Bone Miner Res 5(11):1135–1138

    PubMed  Google Scholar 

  25. Cashman KD, Flynn A (1996) Effect of dietary calcium intake and meal calcium content on calcium absorption in the rat. Br J Nutr 76(3):463–470

    Article  PubMed  Google Scholar 

  26. Miura T, Matsuzaki H, Suzuki K, Goto S (1999) Long-term high intake of calcium reduces magnesium utilisation in rats. Nutr Res 19(9):1363–1369

    Article  Google Scholar 

  27. Tryfonidou MA, van den Broek J, van den Brom WE, Hazewinkel HA (2002) Intestinal calcium absorption in growing dogs is influenced by calcium intake and age but not by growth rate. J Nutr 132(11):3363–3368

    PubMed  Google Scholar 

  28. Ames SK, Gorham BM, Abrams SA (1999) Effects of high compared with low calcium intake on calcium absorption and incorporation of iron by red blood cells in small children. Am J Clin Nutr 70(1):44–48

    PubMed  Google Scholar 

  29. Tahiri M,Tressol JC,Arnaud J, Bornet F, Bouteloup-Demange C,Feillet-Coudray C, Ducros V, Pepin D, Brouns F, Rayssiguier AM, Coudray C (2001) Five-week intake of short-chain fructooligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. J Bone Miner Res 16(11):2152–2160

    PubMed  Google Scholar 

  30. Coudray C, Bellanger J, Vermorel M, Sinaud S, Wils D, Feillet-Coudray C, Brandolini M, Bouteloup-Demange C, Rayssiguier Y (2003) Two polyol, lowdigestible carbohydrates, improve the apparent absorption of magnesium but not of calcium in healthy young men. J Nutr 133(1):90–93

    PubMed  Google Scholar 

  31. Andon MB, Ilich JZ, Tzagournis MA, Matkovic V (1996) Magnesium balance in adolescent females consuming a lowor high-calcium diet. Am J Clin Nutr 63(6):950–953

    PubMed  Google Scholar 

  32. Yan L, Prentice A, Dibba B, Jarjou LM, Stirling DM, Fairweather-Tait S (1996) The effect of long-term calcium supplementation on indices of iron, zinc and magnesium status in lactating Gambian women. Br J Nutr 76(6):821–831

    Article  PubMed  Google Scholar 

  33. Sojka J, Wastney M, Abrams S, Lewis SF, Martin B, Weaver C, Peacock M (1997) Magnesium kinetics in adolescent girls determined using stable isotopes: effects of high and low calcium intake. Am J Physiol 273(2 Pt 2):R710–R715

    PubMed  Google Scholar 

  34. Brink EJ, Beynen AC, Dekker PR, van Beresteijn EC, van der Meer R (1992) Interaction of calcium and phosphate decreases ileal magnesium solubility and apparent magnesium absorption in rats. J Nutr 122(3):580–586

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Coudray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coudray, ., Feillet-Coudray, C., Tressol, J.C. et al. Stimulatory effect of inulin on intestinal absorption of calcium and magnesium in rats is modulated by dietary calcium intakes. Eur J Nutr 44, 293–302 (2005). https://doi.org/10.1007/s00394-004-0526-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-004-0526-7

Key words

Navigation