, Volume 25, Issue 8, pp 667-673
Date: 02 Jun 2009

Development of hepatic tissue engineering

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Liver transplantation is still the only treatment for end-staged liver diseases in children. However, donor organ shortage and immunosuppression are major limitations. Thus, approaches of hepatocyte transplantation are under investigation. Using cells might permit mass expansion, cryopreservation, and the ex vivo genetic modification of cells. For the development of cell-transplantation techniques, the use of three-dimensional scaffolds as carrier was shown to be advantageous. Polymeric matrices permit the formation of a neo-tissue and stimulation by the modification of the matrix surface. Another important issue is to define the right cell type for transplantation. Adult hepatocytes have a limited growth and differentiation potential. In contrast, fetal liver cells (FLC) possess an enormous growth and a bipotential differentiation potential. Thus, these cells may be very attractive as a cell resource for developing cell-based liver replacement. A third major issue in this approach is the neo-vascularization. Therefore, the transplantation in a recently developed model using a microsurgically created arterioveno-venous (AV) loop as a central vessel for the neo-tissue was used for transplantation of FLC in a fibrin-matrix. Initial results indicated that the transplantation of FLC using the AV-loop transplantation model may be promising for the development of highly vascularized in vivo tissue-engineered liver support systems.