, Volume 13, Issue 3, pp 197-211

Objective comparison of patterns of CO2 induced climate change in coupled GCM experiments

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


 Four transient GCM experiments simulating the climatic response to gradually increasing CO2, and two equilibrium doubled CO2 experiments are compared. The zonally symmetric and asymmetric features of climate are both examined. Surface air temperature, sea level pressure, the 500 mb height and the relative topography between 500 and 1000 mb are analyzed. In the control simulations, the broad aspects of the present climate are in most cases well reproduced, although the stationary eddies tend to be less reliably simulated than the zonal means. However, the agreement between the four transient experiments on the geographical patterns of climate change is less impressive. While some zonally symmetric features, in particular the meridional distribution of surface air warming in the boreal winter, are rather similar in all models, the intermodel cross correlations for the zonally asymmetric changes are low. The agreement is largely restricted to some very general features such as more warming over the continents than over the oceans. The largest discrepancies between the two equilibrium-doubled CO2 experiments and the transient experiments are found at the high southern latitudes, in particular in the austral winter. To identify the most robust geographical patterns of change in the transient experiments, the standard t test is used to determine if the four-model mean change is significantly above or below the global mean.

Received: 18 January 1996 / Accepted: 5 July 1996