Skip to main content

Advertisement

Log in

Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project

  • Published:
Climate Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 13 May 2016

This article has been updated

Abstract

Ocean–sea ice reanalyses are crucial for assessing the variability and recent trends in the Arctic sea ice cover. This is especially true for sea ice volume, as long-term and large scale sea ice thickness observations are inexistent. Results from the Ocean ReAnalyses Intercomparison Project (ORA-IP) are presented, with a focus on Arctic sea ice fields reconstructed by state-of-the-art global ocean reanalyses. Differences between the various reanalyses are explored in terms of the effects of data assimilation, model physics and atmospheric forcing on properties of the sea ice cover, including concentration, thickness, velocity and snow. Amongst the 14 reanalyses studied here, 9 assimilate sea ice concentration, and none assimilate sea ice thickness data. The comparison reveals an overall agreement in the reconstructed concentration fields, mainly because of the constraints in surface temperature imposed by direct assimilation of ocean observations, prescribed or assimilated atmospheric forcing and assimilation of sea ice concentration. However, some spread still exists amongst the reanalyses, due to a variety of factors. In particular, a large spread in sea ice thickness is found within the ensemble of reanalyses, partially caused by the biases inherited from their sea ice model components. Biases are also affected by the assimilation of sea ice concentration and the treatment of sea ice thickness in the data assimilation process. An important outcome of this study is that the spatial distribution of ice volume varies widely between products, with no reanalysis standing out as clearly superior as compared to altimetry estimates. The ice thickness from systems without assimilation of sea ice concentration is not worse than that from systems constrained with sea ice observations. An evaluation of the sea ice velocity fields reveals that ice drifts too fast in most systems. As an ensemble, the ORA-IP reanalyses capture trends in Arctic sea ice area and extent relatively well. However, the ensemble can not be used to get a robust estimate of recent trends in the Arctic sea ice volume. Biases in the reanalyses certainly impact the simulated air–sea fluxes in the polar regions, and questions the suitability of current sea ice reanalyses to initialize seasonal forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

  • 13 May 2016

    An erratum to this article has been published.

References

  • Andersen S, Breivik LA, Eastwood S, Godøy Ø, Lind M, Porcires M, Schyberg H (2007) OSI SAF sea ice product manual—v3. 5. EUMETSAT OSI SAF—ocean and sea ice satellite application facility. Tech. Rep. SAF/OSI/met. no/TEC/MA/125

  • Anisimov OA, Vaughan DG, Callaghan TV, Furgal C, Marchant H, Prowse TD, Vilhjàlmsson H, Walsh JE (2007) Polar regions (Arctic and Antarctic). Clim Change 15:653–685

    Google Scholar 

  • Balmaseda M, Mogensen K, Molteni F, Weaver A (2010) The NEMOVAR-COMBINE ocean re-analysis (No. 1, p. 10). COMBINE technical report

  • Balmaseda MA, Hernandez F, Storto A, Palmer MD, Alves O, Shi L, Smith GC, Toyoda T, Valdivieso M, Barnier B, Behringer D, Boyer T, Chang Y-S, Chepurin GA, Ferry N, Forget G, Fujii Y, Good S, Guinehut S, Haines K, Ishikawa Y, Keeley S, Köhl A, Lee T, Martin M, Masina S, Masuda S, Meyssignac B, Mogensen K, Parent L, Peterson KA, Tang YM, Yin Y, Vernieres G, Wang X, Waters J, Wedd R, Wang O, Xue Y, Chevallier M, Lemieux J-F, Dupont F, Kuragano T, Kamachi M, Awaji T, Caltabiano A, Wilmer-Becker K, Gaillard F (2015) The Ocean Reanalyses Intercomparison Project (ORA-IP). J Oper Oceanogr 8(S1):s80–s97. doi:10.1080/1755876X.2015.1022329

  • Blanchard-Wrigglesworth E, Armour KC, Bitz CM, DeWeaver E (2011) Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J Clim 24(1):231–250

    Article  Google Scholar 

  • Blockley EW, Martin MJ, McLaren AJ, Ryan AG, Waters J, Lea DJ, Mirouze I, Peterson KA, Sellar A, Storkey D (2014) Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts. Geosci Model Dev 7(6):2613–2638

    Article  Google Scholar 

  • Cavalieri DJ, Parkinson CL, Gloersen P, Gomiso JC, Zwally HJ (1999) Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J Geophys Res Oceans (1978–2012) 104(C7):15803–15814

  • Caya A, Buehner M, Carrieres T (2010) Analysis and forecasting of sea ice conditions with three-dimensional variational data assimilation and a coupled ice–ocean model. J Atmos Ocean Technol 27(2):353–369

    Article  Google Scholar 

  • Chang Y-S, Zhang S, Rosati A, Delworth TL, Stern WF (2013) An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Clim Dyn 40(3–4):775–803. doi:10.1007/s00382-012-1412-2

    Article  Google Scholar 

  • Chevallier M, Salas-Mélia D (2012) The role of sea ice thickness distribution in the Arctic sea ice potential predictability: a diagnostic approach with a coupled GCM. J Clim 25(8):3025–3038

    Article  Google Scholar 

  • Chevallier M, Salas-Mélia D, Voldoire A, Déqué M, Garric G (2013) Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J Clim 26(16):6092–6104

    Article  Google Scholar 

  • Danabasoglu G, Yeager SG, Bailey D, Behrens E, Bentsen M, Bi D, Biastoch A, Boning C, Bozec A, Canuto V, Cassou C, Chassignet E, Coward AC, Danilov S, Diansky N, Drange H, Farneti R, Fernandez E, Fogli PG, Forget G, Fujii Y, Griffies SM, Gusev A, Heimbach P, Howard A, Jung T, Kelley M, Large WG, Leboissetier A, Lu J, Madec G, Marsland SJ, Masina S, Navarra A, Nurser AJG, Pirani A, Salas-Melia D, Samuels BL, Scheinert M, Sidorenko D, Treguier A-M, Tsujino H, Uotila P, Valcke S, Voldoire A, Wang Q (2014) North Atlantic simulations in coordinated ocean–ice reference experiments phase II (CORE-II). Part I: mean states. Ocean Model 73:76–107. doi:10.1016/j.ocemod.2013.10.005

    Article  Google Scholar 

  • Day JJ, Hawkins E, Tietsche S (2014) Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys Res Lett 41(21):7566–7575

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W (2012) The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens Environ 116:140–158

    Article  Google Scholar 

  • Dulière V, Fichefet T (2007) On the assimilation of ice velocity and concentration data into large-scale sea ice models. Ocean Sci Discuss 4(2):265–301

    Article  Google Scholar 

  • Ferry N, Parent L, Garric G, Barnier B, Jourdain NC (2010) Mercator global Eddy permitting ocean reanalysis GLORYS1V1: description and results. Mercator-Ocean Q Newslett 36:15–27

    Google Scholar 

  • Fichefet T, Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res Oceans (1978–2012) 102(C6):12609–12646

    Article  Google Scholar 

  • Flocco D, Schroeder D, Feltham DL, Hunke EC (2012) Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J Geophys Res Oceans (1978–2012) 117:C09032. doi:10.1029/2012JC008195

    Google Scholar 

  • Forget G, Campin J-M, Heimbach P, Hill CN, Ponte RM, Wunsch C (2015) ECCO 10 version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci Model Dev Discuss 8:3653–3743. doi:10.5194/gmdd-8-3653-2015

    Article  Google Scholar 

  • Fowler C, Emery W, Tschudi M (2013) Polar pathfinder daily 25 km EASE-grid sea ice motion vectors. Version 2 (daily and mean gridded field). NASA DAAC at the NSIDC, Boulder

    Google Scholar 

  • Germe A, Houssais MN, Herbaut C, Cassou C (2011) Greenland Sea sea ice variability over 1979–2007 and its link to the surface atmosphere. J Geophys Res Oceans (1978–2012) 116(C10):C10034

  • Guemas V, Blanchard-Wrigglesworth E, Chevallier M, Day JJ, Déqué M, Doblas-Reyes FJ, Fuckar N, Germe A, Hawkins E, Keeley S, Koenigk T, Salas-Mélia D, Tietsche S (2014) A review on Arctic sea ice predictability and prediction on seasonal-to-decadal timescales. Q J R Meteorol Soc

  • Hibler WD III (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9(4):815–846

    Article  Google Scholar 

  • Hunke EC, Dukowicz JK (2002) The elastic–viscous–plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere-incorporation of metric terms. Mon Weather Rev 130(7):1848–1865

    Article  Google Scholar 

  • Hunke EC, Lipscomb WH (2010) CICE: the Los Alamos sea ice model, documentation and software user’s manual, Version 4.1

  • Ivanova N, Johannessen OM, Pedersen LT, Tonboe RT (2014) Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: a comparison of eleven sea ice concentration algorithms. IEEE Trans Geosci Remote Sens 52(11):7233–7246

    Article  Google Scholar 

  • Jakobson E, Vihma T, Palo T, Jakobson L, Keernik H, Jaagus J (2012) Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys Res Lett 39(10):L10802

    Article  Google Scholar 

  • Johnson M, Gaffigan S, Hunke E, Gerdes R (2007) A comparison of Arctic Ocean sea ice concentration among the coordinated AOMIP model experiments. J Geophys Res Oceans (1978–2012) 112(C4):C04S11

  • Johnson M, Proshutinsky A, Aksenov Y, Nguyen AT, Lindsay R, Haas C, Zhang J, Diansky N, Kwok R, Maslowski W, Häkkinen S, Ashik I, de Cuevas B (2012) Evaluation of Arctic sea ice thickness simulated by AOMIP models. Journal of Geophysical Research: Oceans (1978–2012) 117(C8):C00D13

  • Kaleschke L, Heygster G, Lüpkes C, Bochert A, Hartmann J, Haarpaintner J, Vihma T (2001) SSM/I sea ice remote sensing for mesoscale ocean–atmosphere interaction analysis: ice and icebergs. Can J Remote Sens 27(5):526–537

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi:10.1175/BAMS-83-11-1631

    Article  Google Scholar 

  • Kauker F, Kaminski T, Karcher M, Giering R, Gerdes R, Voßbeck M (2009) Adjoint analysis of the 2007 all time Arctic sea-ice minimum. Geophys Res Lett 36(3):L03707

  • Kern S, Kaleschke L, Spreen G (2010) Climatology of the Nordic (Irminger, Greenland, Barents, Kara and White/Pechora) Seas ice cover based on 85 GHz satellite microwave radiometry: 1992–2008. Tellus A 62(4):411–434

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori M, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteor Soc Jpn 93(1):5–48. doi:10.2151/jmsj.2015-001

    Article  Google Scholar 

  • Kreyscher M, Harder M, Lemke P, Flato GM (2000) Results of the sea ice model intercomparison project: evaluation of sea ice rheology schemes for use in climate simulations. J Geophys Res 105:11299–11320

    Article  Google Scholar 

  • Kurtz NT, Farrell SL, Studinger M, Galin N, Harbeck JP, Lindsay R, Onana VD, Panzer B, Sonntag JG (2013) Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere 7(4):1035–1056

    Article  Google Scholar 

  • Kwok R (2011) Observational assessment of Arctic Ocean sea ice motion, export, and thickness in CMIP3 climate simulations. J Geophys Res Oceans (1978–2012) 116(C8):C00D05

  • Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J Geophys Res 114:C07005. doi:10.1029/2009JC005312

    Article  Google Scholar 

  • Kwok R, Cunningham GF (2008) ICESat over Arctic sea ice: estimation of snow depth and ice thickness. J Geophys Res Oceans (1978–2012) 113(C8):C08010

  • Kwok R, Rothrock DA (2009) Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys Res Lett 36(15):L15501

    Article  Google Scholar 

  • Kwok R, Cunningham GF, Pang SS (2004) Fram Strait sea ice outflow. J Geophys Res Oceans (1978–2012) 109(C1):C01009

  • Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. National Center for Atmospheric Research, Boulder

    Google Scholar 

  • Large WG, Yeager SG (2009) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33(2–3):341–364

    Article  Google Scholar 

  • Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, Kwok R, Schweiger A, Zhang J, Haas C, Hendricks S, Krishfield R, Kurtz N, Farrell S, Davidson M (2013) CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett 40(4):732–737

    Article  Google Scholar 

  • Lindsay R (2010) New unified sea ice thickness climate data record. Eos Trans Am Geophys Union 91(44):405–406

    Article  Google Scholar 

  • Lindsay RW, Zhang J (2005) The thinning of Arctic sea ice, 1988–2003: have we passed a tipping point? J Clim 18(22):4879–4894

    Article  Google Scholar 

  • Lindsay RW, Zhang J (2006) Assimilation of ice concentration in an ice–ocean model. J Atmos Ocean Technol 23(5):742–749

    Article  Google Scholar 

  • Lindsay R, Haas C, Hendricks S, Hunkeler P, Kurtz N, Paden J, Panzer B, Sonntag J, Yungel J, Zhang J (2012) Seasonal forecasts of Arctic sea ice initialized with observations of ice thickness. Geophys Res Lett 39(21):L21502

    Article  Google Scholar 

  • Lindsay R, Wensnahan M, Schweiger A, Zhang J (2014) Evaluation of seven different atmospheric reanalysis products in the Arctic. J Clim 27(7):2588–2606. doi:10.1175/JCLI-D-13-00014.1

    Article  Google Scholar 

  • Lisæter KA, Rosanova J, Evensen G (2003) Assimilation of ice concentration in a coupled ice–ocean model, using the Ensemble Kalman filter. Ocean Dyn 53(4):368–388

    Article  Google Scholar 

  • Losch M, Menemenlis D, Campin J-M, Heimbach P, Hill C (2010) On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations. Ocean Model 33:129–144

    Article  Google Scholar 

  • Lüpkes C, Vihma T, Jakobson E, König-Langlo G, Tetzlaff A (2010) Meteorological observations from ship cruises during summer to the central Arctic: a comparison with reanalysis data. Geophys Res Lett 37(9):L09810

    Article  Google Scholar 

  • Markus T, Cavalieri DJ (2008) AMSR-E algorithm theoretical basis document: sea ice products, vol 3. NASA, Greenbelt, MD, USA

  • Massonnet F, Fichefet T, Goosse H, Vancoppenolle M, Mathiot P, König Beatty C (2011) On the influence of model physics on simulations of Arctic and Antarctic sea ice. Cryosphere 5(3):687–699

    Article  Google Scholar 

  • Massonnet F, Goosse H, Fichefet T, Counillon F (2014) Calibration of sea ice dynamic parameters in an ocean–sea ice model using an ensemble Kalman filter. J Geophys Res Oceans 119(7):4168–4184. doi:10.1002/2013JC009705

    Article  Google Scholar 

  • Massonnet F, Fichefet T, Goosse H (2015) Prospects for improved seasonal Arctic sea ice predictions from multivariate data assimilation. Ocean Model 88:16–25

    Article  Google Scholar 

  • Mellor GL, Kantha L (1989) An ice–ocean coupled model. J Geophys Res Oceans (1978–2012) 94(C8):10937–10954

    Article  Google Scholar 

  • Miller PA, Laxon SW, Feltham DL (2005). Improving the spatial distribution of modeled Arctic sea ice thickness. Geophys Res Lett 32(18):L18503

    Article  Google Scholar 

  • Mogensen K, Balmaseda MA, Weaver A (2012) and European Centre for Medium Range Weather Forecasts (2012) The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for system 4. European Centre for Medium-Range Weather Forecasts

  • Msadek R, Vecchi GA, Winton M, Gudgel RG (2014) Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys Res Lett 41(14):5208–5215

    Article  Google Scholar 

  • Notz D (2014) sea-ice extent and its trend provide limited metrics of model performance. Cryosphere 8:229–243

    Article  Google Scholar 

  • Overland JE (1985) Atmospheric boundary layer structure and drag coefficients over sea ice (1978–2012). J Geophys Res Oceans 90(C5):9029–9049

    Article  Google Scholar 

  • Peterson BJ, McClelland J, Curry R, Holmes RM, Walsh JE, Aagaard K (2006) Trajectory shifts in the Arctic and subarctic freshwater cycle. Science 313:1061–1066

    Article  Google Scholar 

  • Peterson KA, Arribas A, Hewitt HT, Keen AB, Lea DJ, McLaren AJ (2014) Assessing the forecast skill of Arctic sea ice extent in the GloSea4 seasonal prediction system. Clim Dyn 44(1–2):147–162

    Google Scholar 

  • Rampal P, Weiss J, Marsan D (2009) Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007. J Geophys Res Oceans (1978–2012) 114(C5):C05013

  • Rampal P, Weiss J, Dubois C, Campin J-M (2011) IPCC climate models do not capture Arctic sea ice drift acceleration: consequences in terms of projected sea ice thinning and decline. J Geophys Res 116:C00D07. doi:10.1029/2011JC007110

    Article  Google Scholar 

  • Rayner N, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res Atmos (1984–2012) 108(D14):4407

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15(13):1609–1625

    Article  Google Scholar 

  • Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648

    Article  Google Scholar 

  • Rigor IG, Ortmeyer M (2004) The international Arctic Buoy program—monitoring the Arctic Ocean for forecasting and research. Arct Res USA 18:21–25

    Google Scholar 

  • Rothrock DA (1975) The energetics of the plastic deformation of pack ice by ridging. J Geophys Res 80(33):4514–4519

    Article  Google Scholar 

  • Roy F, Chevallier M, Smith G, Dupont F, Garric G, Lemieux J-F, Lu Y, Davidson F (2015) Arctic sea ice and freshwater sensitivity to the treatment of the atmosphere–ice–ocean surface layer. J Geophys Res. doi:10.1002/2014JC010677

    Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057

    Article  Google Scholar 

  • Sakov P, Counillon F, Bertino L, Lisæter KA, Oke PR, Korablev A (2012) TOPAZ4: an ocean–sea ice data assimilation system for the North Atlantic and Arctic. Ocean Sci 8(4):633

    Article  Google Scholar 

  • Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R (2011) Uncertainty in modeled Arctic sea ice volume. J Geophys Res Oceans (1978–2012) 116(C8):C00D06

  • Shine KP, Henderson-Sellers A (1985) The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization. J Geophys Res Atmos (1984–2012) 90(D1):2243–2250

    Article  Google Scholar 

  • Smith GC, Roy F, Reszka M, Surcel Colan D, He Z, Deacu D, Bélanger JM, Skachko S, Liu Y, Dupont F, Lemieux J-F, Beaudoin C, Tranchant B, Drévillon M, Garric G, Testut C-E, Lellouche J-M, Pellerin P, Ritchie H, Lu Y, Davidson F, Buehner M, Caya A, Lajoie M (2015) Sea ice forecast verification in the Canadian Global Ice Ocean Prediction System. Q J R Meteorol Soc. doi:10.1002/qj.2555

  • Stark JD, Ridley J, Martin M, Hines A (2008) Sea ice concentration and motion assimilation in a sea ice–ocean model. J Geophys Res Oceans (1978–2012) 113(C5):C05S91

  • Steele M, Zhang J, Rothrock D, Stern H (1997) The force balance of sea ice in a numerical model of the Arctic Ocean. J Geophys Res Oceans (1978–2012) 102(C9):21061–21079

    Article  Google Scholar 

  • Storto A, Masina S, Dobricic S (2014) Estimation and impact of nonuniform horizontal correlation length scales for global ocean physical analyses. J Atmos Ocean Technol 31:2330–2349

    Article  Google Scholar 

  • Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39(16):L16502

    Article  Google Scholar 

  • Sumata H, Lavergne T, Girard-Ardhuin F, Kimura N, Tschudi MA, Kauker F, Karcher M, Gerdes R (2014) An intercomparison of Arctic ice drift products to deduce uncertainty estimates. J Geophys Res Oceans 119(8):4887–4921

    Article  Google Scholar 

  • Swart NC, Fyfe JC, Hawkins E, Kay JE, Jahn A (2015) Influence of internal variability on Arctic sea-ice trends. Nat Clim Change 5(2):86–89

    Article  Google Scholar 

  • Tang YM, Balmaseda MA, Mogensen KS, Keeley SPE, Janssen PAEM (2013) Sensitivity of sea ice thickness to observational constraints on sea ice concentration. ECMWF Tech Memo Number 707

  • Tietsche S, Notz D, Jungclaus JH, Marotzke J (2012) Assimilation of sea-ice concentration in a global climate model—physical and statistical aspects. Ocean Sci Discuss 9(4):2403

    Article  Google Scholar 

  • Tietsche S, Balmaseda MA, Zuo H, Mogensen K (2015) Arctic sea ice in the ECMWF MyOcean2 ocean reanalysis ORAP5. Clim Dyn doi: 10.1007/s00382-015-2673-3

    Google Scholar 

  • Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T, Kamachi M (2013) Improved analysis of the seasonal-interannual fields by a global ocean data assimilation system. Theor Appl Mech Jpn 61:31–48. doi:10.11345/nctam.61.31

    Google Scholar 

  • Troccoli A, Kallberg TN (2004) Precipitation correction in the ERA-40 reanalysis. ERA-40 Project Report Series, 13

  • Tsamados M, Feltham DL, Wilchinsky AV (2013) Impact of a new anisotropic rheology on simulations of Arctic sea ice. J Geophys Res Oceans 118(1):91–107

    Article  Google Scholar 

  • Tsamados M, Feltham DL, Schroeder D, Flocco D, Farrell SL, Kurtz N, Laxon S, Bacon S (2014) Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. J Phys Oceanogr 44(5):1329–1353

    Article  Google Scholar 

  • Valdivieso M, Haines K, Zuo H, Lea D (2014) Freshwater and heat transports from global ocean synthesis. J Geophys Res Oceans. doi:10.1002/2013JC009357

    Google Scholar 

  • Vernieres G, Rienecker MM, Kovach R, Keppenne LC (2012) The GEOS–iODAS: description and evaluation, Tech. Rep. TM-2012-104606, NASA, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD, USA

  • Vihma T (2014) Effects of Arctic sea ice decline on weather and climate: a review. Surv Geophys 35(5):1175–1214

    Article  Google Scholar 

  • Voldoire A et al (2013) The CNRM-CM5. 1 Global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121

    Article  Google Scholar 

  • Warren SG, Rigor IG, Untersteiner N, Radionov VF, Bryazgin NN, Aleksandrov YI, Colony R (1999) Snow depth on Arctic sea ice. J Clim 12(6):1814–1829

    Article  Google Scholar 

  • Winton M (2000) A reformulated three-layer sea ice model. J Atmos Ocean Technol 17(4):525–531

    Article  Google Scholar 

  • Zhang J, Rothrock DA (2003) Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon Weather Rev 131(5):845–861

    Article  Google Scholar 

  • Zhang S, Harrison MJ, Rosati A, Wittenberg AT (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135(10):3541–3564. doi:10.1175/MWR3466.1

    Article  Google Scholar 

  • Zuo H, Balmaseda MA, Mogensen K (2015) The ECMWF-MyOcean2 eddy-permitting ocean and sea-ice reanalysis ORAP5. Part 1: implementation, ECMWF technical memorandum 736

  • Zygmuntowska M, Rampal P, Ivanova N, Smedsrud LH (2014) Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends. Cryosphere 8(2):705–720

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank François Massonnet and one anonymous reviewer for their helpful comments on a first version of the manuscript. The authors wish to thank Fanny Girard-Ardhuin, David Salas-Mélia, Charles-Emmanuel Testut and Ed Blanchard-Wrigglesworth for valuable discussions. During the initial preparation of this intercomparison, our co-author Nicolas Ferry passed away. He was an active member of the GODAE OceanView and CLIVAR GSOP community, and was leading the ocean reanalysis scientific activity and the GLORYS project at Mercator Océan. We will greatly miss the scientific expert, the gentle colleague and the good friend. The GLORYS reanalysis project has been partially funded by the European Commission funded projects FP7 MyOcean and MyOcean2 projects. The development and production of C-GLORS05V3 has received funding from the Italian Ministry of Education, University and Research and the Italian Ministry of Environment, Land and Sea under the GEMINA project and from the European Commission Copernicus program, previously known as GMES program, under the MyOcean and MyOcean2 projects. ECMWF also acknowledges the MyOcean2 project for the ORAP5 reanalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Chevallier.

Additional information

This paper is a contribution to the special issue on Ocean estimation from an ensemble of global ocean reanalyses, consisting of papers from the Ocean ReAnalyses Intercomparsion Project (ORA-IP), coordinated by CLIVAR-GSOP and GODAE OceanView. The special issue also contains specific studies using single reanalysis systems.

An erratum to this article is available at https://doi.org/10.1007/s00382-016-3155-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevallier, M., Smith, G.C., Dupont, F. et al. Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project. Clim Dyn 49, 1107–1136 (2017). https://doi.org/10.1007/s00382-016-2985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-2985-y

Keywords

Navigation