Skip to main content

Advertisement

Log in

The influence of the Gulf Stream on wintertime European blocking

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Wintertime blocking is responsible for extended periods of anomalously cold and dry weather over Europe. In this study, the influence of the Gulf Stream sea surface temperature (SST) front on wintertime European blocking is investigated using a reanalysis dataset and a pair of atmospheric general circulation model (AGCM) simulations. The AGCM is forced with realistic and smoothed Gulf Stream SST, and blocking frequency over Europe is found to depend crucially on the Gulf Stream SST front. In the absence of the sharp SST gradient European blocking is significantly reduced and occurs further downstream. The Gulf Stream is found to significantly influence the surface temperature anomalies during blocking periods and the occurrence of associated cold spells. In particular the cold spell peak, located in central Europe, disappears in the absence of the Gulf Stream SST front. The nature of the Gulf Stream influence on European blocking development is then investigated using composite analysis. The presence of the Gulf Stream SST front is important in capturing the observed quasi-stationary development of European blocking. The development is characterised by increased lower-tropospheric meridional eddy heat transport in the Gulf Stream region and increased eddy kinetic energy at upper-levels, which acts to reinforce the quasi-stationary jet. When the Gulf Stream SST is smoothed the storm track activity is weaker, the development is less consistent and European blocking occurs less frequently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Although the cut-off between eddy and low-pass variables is abrupt, E·D maps produced with 2–6 day band pass filtered eddies and 8-day low-pass filtered background flows are qualitatively very similar.

  2. This is type B cyclogenesis (e.g. Petterssen and Smebye 1971; Hoskins et al. 1985). Type A cyclogenesis also occurs close to the Gulf Stream (Gray and Dacre 2006) but more intense cyclogenesis in this region has been attributed to type B processes (Sanders 1986).

References

  • Ahmadi-Givi F, Graig GC, Plant RS (2004) The dynamics of a midlatitude cyclone with very strong latent-heat release. Q J R Meteorol Soc 130(596):295–323. doi:10.1256/qj.02.226

    Article  Google Scholar 

  • Altenhoff AM, Martius O, Croci-Maspoli M, Schwierz C, Davies HC (2008) Linkage of atmospheric blocks and synoptic-scale Rossby waves: a climatological analysis. Tellus A 60(5):1053–1063. doi:10.1111/j.1600-0870.2008.00354.x

    Article  Google Scholar 

  • Anstey JA, Davini P, Gray LJ, Woollings TJ, Butchart N, Cagnazzo C, Yang S (2013) Multi-model analysis of Northern Hemisphere winter blocking: model biases and the role of resolution. J Geophys Res Atmos 118(10):3956–3971. doi:10.1002/jgrd.50231

    Article  Google Scholar 

  • Barnes EA, Slingo J, Woollings T (2011) A methodology for the comparison of blocking climatologies across indices, models and climate scenarios. Clim Dyn 38(11–12):2467–2481. doi:10.1007/s00382-011-1243-6

    Google Scholar 

  • Barriopedro D, García-Herrera R, Trigo R (2010) Application of blocking diagnosis methods to general circulation models. Part I: a novel detection scheme. Clim Dyn 35(7–8):1373–1391

    Article  Google Scholar 

  • Berckmans J, Woollings T, Demory M-E, Vidale P-L, Roberts M (2013) Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing. Atmos Sci Lett 14(1):34–40. doi:10.1002/asl2.412

    Article  Google Scholar 

  • Berggren R, Bolin B, Rossby CG (1949) An aerological study of zonal motion, its perturbations and break-down. Tellus 1(2):14–37

    Article  Google Scholar 

  • Booth JF, Wang S, Polvani L (2012) Midlatitude storms in a moister world: lessons from idealized baroclinic life cycle experiments. Clim Dyn 41(3–4):787–802. doi:10.1007/s00382-012-1472-3

    Google Scholar 

  • Brachet S, Codron F, Feliks Y, Ghil M, Le Treut H, Simonnet E (2012) Atmospheric circulations induced by a midlatitude SST front: a GCM study. J Clim 25(6):1847–1853. doi:10.1175/jcli-d-11-00329.1

    Article  Google Scholar 

  • Brayshaw DJ, Hoskins B, Blackburn M (2008) The storm-track response to idealized SST perturbations in an aquaplanet GCM. J Atmos Sci 65(9):2842–2860. doi:10.1175/2008jas2657.1

    Article  Google Scholar 

  • Brayshaw DJ, Hoskins B, Blackburn M (2011) The basic ingredients of the North Atlantic storm track. Part II: sea surface temperatures. J Atmos Sci 68(8):1784–1805. doi:10.1175/2011jas3674.1

    Article  Google Scholar 

  • Broecker WS (1997) Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science 278(5343):1582–1588

    Article  Google Scholar 

  • Buehler T, Raible CC, Stocker TF (2011) The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus A 63(2):212–222. doi:10.1111/j.1600-0870.2010.00492.x

    Article  Google Scholar 

  • Cai M, Yang S, Van den Dool H, Kousky V (2007) Dynamical implications of the orientation of atmospheric eddies: a local energetics perspective. Tellus A 59(1):127–140

    Article  Google Scholar 

  • Cione JJ, Raman S, Pietrafesa LJ (1993) The effect of Gulf Stream-induced baroclinicity on US East Coast winter cyclones. Mon Weather Rev 121(2):421–430

    Article  Google Scholar 

  • Colucci SJ (1985) Explosive cyclogenesis and large-scale circulation changes: implications for atmospheric blocking. J Atmos Sci 42(24):2701–2717

    Article  Google Scholar 

  • Colucci SJ, Alberta TL (1996) Planetary-scale climatology of explosive cyclogenesis and blocking. Mon Weather Rev 124(11):2509–2520

    Article  Google Scholar 

  • Crum FX, Stevens DF (1988) A case study of atmospheric blocking using isentropic analysis. Mon Weather Rev 116(1):223–241

    Article  Google Scholar 

  • Davini P, Cagnazzo C, Gualdi S, Navarra A (2012) Bidimensional diagnostics, variability, and trends of northern Hemisphere blocking. J Clim 25(19):6496–6509. doi:10.1175/jcli-d-12-00032.1

    Article  Google Scholar 

  • Davini P, Cagnazzo C, Fogli PG, Manzini E, Gualdi S, Navarra A (2013) European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model. Clim Dyn 43(1–2):71–85. doi:10.1007/s00382-013-1873-y

    Google Scholar 

  • Deremble B, Lapeyre G, Ghil M (2012) Atmospheric dynamics triggered by an oceanic SST front in a moist quasigeostrophic model. J Atmos Sci 69(5):1617–1632. doi:10.1175/jas-d-11-0288.1

    Article  Google Scholar 

  • Doblas-Reyes FJ (2002) Sensitivity of the Northern Hemisphere blocking frequency to the detection index. J Geophys Res. doi:10.1029/2000jd000290

    Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18(8):1016–1022

    Article  Google Scholar 

  • Emanuel KA, Živkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56(11):1766–1782

    Article  Google Scholar 

  • Enomoto T, Kuwano-Yoshida A, Komori N, Ohfuchi W (2008) Description of AFES 2: improvements for high-resolution and coupled simulations. In: Hamilton K, Ohfuchi W (eds) High resolution numerical modelling of the atmosphere and ocean. Springer, New York, pp 77–97

    Chapter  Google Scholar 

  • Gray SL, Dacre HF (2006) Classifying dynamical forcing mechanisms using a climatology of extratropical cyclones. Q J R Meteorol Soc 132(617):1119–1137. doi:10.1256/qj.05.69

    Article  Google Scholar 

  • Hand R, Keenlyside N, Omrani N-E, Latif M (2013) Simulated response to inter-annual SST variations in the Gulf Stream region. Clim Dyn 42(3–4):715–731. doi:10.1007/s00382-013-1715-y

    Google Scholar 

  • Hoskins B (1997) A potential vorticity view of synoptic development. Meteorol Appl 4(4):325–334

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2002) New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci 59(6):1041–1061

    Article  Google Scholar 

  • Hoskins BJ, James IN, White GH (1983) The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40(7):1595–1612

    Article  Google Scholar 

  • Hoskins BJ, McIntyre M, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc 111(470):877–946

    Article  Google Scholar 

  • Huynen M-M, Martens P, Schram D, Weijenberg MP, Kunst AE (2001) The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ Health Perspect 109(5):463

    Article  Google Scholar 

  • Illari L, Marshall JC (1983) On the interpretation of eddy fluxes during a blocking episode. J Atmos Sci 40(9):2232–2242

    Article  Google Scholar 

  • Jung T, Miller MJ, Palmer TN, Towers P, Wedi N, Achuthavarier D, Hodges KI (2012) High-resolution global climate simulations with the ECMWF model in project athena: experimental design, model climate, and seasonal forecast skill. J Clim 25(9):3155–3172. doi:10.1175/jcli-d-11-00265.1

    Article  Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Kӧnnen GP, Bӧhm R, Demarée G, Gocheva A, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22(12):1441–1453. doi:10.1002/joc.773

    Article  Google Scholar 

  • Kuwano-Yoshida A (2014) Using the local deepening rate to indicate extratropical cyclone activity. SOLA 10:199–203

    Article  Google Scholar 

  • Kuwano-Yoshida A, Enomoto T (2013) Predictability of explosive cyclogenesis over the northwestern Pacific region using ensemble reanalysis. Mon Weather Rev 141(11):3769–3785

    Article  Google Scholar 

  • Kuwano-Yoshida A, Enomoto T, Ohfuchi W (2010a) An improved PDF cloud scheme for climate simulations. Q J R Meteorol Soc 136(651):1583–1597. doi:10.1002/qj.660

    Article  Google Scholar 

  • Kuwano-Yoshida A, Minobe S, Xie S-P (2010b) Precipitation response to the Gulf Stream in an atmospheric GCM*. J Clim 23(13):3676–3698. doi:10.1175/2010jcli3261.1

    Article  Google Scholar 

  • Lee S-S, Lee J-Y, Wang B, Ha K-J, Heo K-Y, Jin F-F, Shukla J (2011) Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Clim Dyn 39(1–2):313–327. doi:10.1007/s00382-011-1188-9

    Google Scholar 

  • Lorenz EN (1955) Available potential energy and the maintenance of the general circulation. Tellus 7(2):157–167

    Article  Google Scholar 

  • Luo D, Cha J, Zhong L, Dai A (2014) A nonlinear multiscale interaction model for atmospheric blocking: the eddy-blocking matching mechanism. Q J R Meteorol Soc 140(683):1785–1808. doi:10.1002/qj.2337

    Article  Google Scholar 

  • Mak M, Cai M (1989) Local barotropic instability. J Atmos Sci 46(21):3289–3311

    Article  Google Scholar 

  • Masato G, Hoskins BJ, Woollings TJ (2009) Can the frequency of blocking be described by a red noise process? J Atmos Sci 66(7):2143–2149. doi:10.1175/2008jas2907.1

    Article  Google Scholar 

  • Masato G, Hoskins BJ, Woollings TJ (2012) Wave-breaking characteristics of midlatitude blocking. Q J R Meteorol Soc 138(666):1285–1296. doi:10.1002/qj.990

    Article  Google Scholar 

  • Masato G, Hoskins BJ, Woollings T (2013) Winter and summer Northern Hemisphere blocking in CMIP5 models. J Clim 26(18):7044–7059. doi:10.1175/jcli-d-12-00466.1

    Article  Google Scholar 

  • Masato G, Woollings T, Hoskins BJ (2014) Structure and impact of atmospheric blocking over the Euro-Atlantic region in present-day and future simulations. Geophys Res Lett 41(3):1051–1058. doi:10.1002/2013gl058570

    Article  Google Scholar 

  • Matsueda M, Mizuta R, Kusunoki S (2009) Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J Geophys Res. doi:10.1029/2009jd011919

    Google Scholar 

  • Michel C, Rivière G (2014) Sensitivity of the position and variability of the eddy-driven jet to different SST Profiles in an aquaplanet general circulation model. J Atmos Sci 71(1):349–371. doi:10.1175/jas-d-13-074.1

    Article  Google Scholar 

  • Michel C, Rivière G, Terray L, Joly B (2012) The dynamical link between surface cyclones, upper-tropospheric Rossby wave breaking and the life cycle of the Scandinavian blocking. Geophys Res Lett. doi:10.1029/2012gl051682

    Google Scholar 

  • Michelangeli PA, Vautard R (1998) The dynamics of Euro-Atlantic blocking onsets. Q J R Meteorol Soc 124(548):1045–1070

    Article  Google Scholar 

  • Minobe S, Takebayashi S (2014) Diurnal precipitation and high cloud frequency variability over the Gulf Stream and over the Kuroshio. Clim Dyn. doi:10.1007/s00382-014-2245-y

    Google Scholar 

  • Minobe S, Kuwano-Yoshida A, Komori N, Xie SP, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452(7184):206–209. doi:10.1038/nature06690

    Article  Google Scholar 

  • Minobe S, Miyashita M, Kuwano-Yoshida A, Tokinaga H, Xie S-P (2010) Atmospheric response to the Gulf Stream: seasonal variations*. J Clim 23(13):3699–3719. doi:10.1175/2010jcli3359.1

    Article  Google Scholar 

  • Nakamura H (1994a) Rotational evolution of potential vorticity associated with a strong blocking flow configuration over Europe. Geophys Res Lett 21(18):2003–2006

    Article  Google Scholar 

  • Nakamura M (1994b) Characteristics of potential vorticity mixing by breaking Rossby waves in the vicinity of a jet. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Nakamura H, Wallace JM (1990) Observed changes in baroclinic wave activity during the life cycles of low-frequency circulation anomalies. J Atmos Sci 47(9):1100–1116

    Article  Google Scholar 

  • Nakamura H, Wallace JM (1993) Synoptic behavior of baroclinic eddies during the blocking onset. Mon Weather Rev 121(7):1892–1903

    Article  Google Scholar 

  • Nakamura H, Nakamura M, Anderson JL (1997) The role of high-and low-frequency dynamics in blocking formation. Mon Weather Rev 125(9):2074–2093

    Article  Google Scholar 

  • Nakamura H, Sampe T, Goto A, Ohfuchi W, Xie S-P (2008) On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys Res Lett. doi:10.1029/2008gl034010

    Google Scholar 

  • Namias J (1947) Characteristics of the general circulation over the Northern Hemisphere during the abnormal winter 1946–47. Mon Weather Rev 75(8):145–152

    Article  Google Scholar 

  • O’Reilly CH, Czaja A (2014) The response of the Pacific storm track and atmospheric circulation to Kuroshio extension variability. Q J R Meteorol Soc. doi:10.1002/qj.2334

    Google Scholar 

  • Ogawa F, Nakamura H, Nishii K, Miyasaka T, Kuwano-Yoshida A (2012) Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophys Res Lett 39(5):L05804

    Article  Google Scholar 

  • Ohfuchi W, Nakamura H, Yoshioka MK, Enomoto T, Takaya K, Peng X, Ninomiya K (2004) 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator: preliminary outcomes of AFES (AGCM for the Earth Simulator). J Earth Simul 1:8–34

    Google Scholar 

  • Pelly JL, Hoskins BJ (2003) A new perspective on blocking. J Atmos Sci 60(5):743–755

    Article  Google Scholar 

  • Petterssen S, Smebye SJ (1971) On the development of extratropical cyclones. Q J R Meteorol Soc 97(414):457–482

    Article  Google Scholar 

  • Raible CC, Ziv B, Saaroni H, Wild M (2009) Winter synoptic-scale variability over the Mediterranean Basin under future climate conditions as simulated by the ECHAM5. Clim Dyn 35(2–3):473–488. doi:10.1007/s00382-009-0678-5

    Google Scholar 

  • Rex DF (1950) Blocking action in the middle troposphere and its effect upon regional climate. Tellus 2(4):275–301

    Article  Google Scholar 

  • Rex DF (1951) The effect of Atlantic blocking action upon European climate. Tellus 3(2):100–112

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20(22):5473–5496

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057. doi:10.1175/2010bams3001.1

    Article  Google Scholar 

  • Sampe T, Nakamura H, Goto A, Ohfuchi W (2010) Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet*. J Clim 23(7):1793–1814. doi:10.1175/2009jcli3163.1

    Article  Google Scholar 

  • Sanders F (1986) Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84. Part I: composite structure and mean behavior. Mon Weather Rev 114(10):1781–1794

    Article  Google Scholar 

  • Scaife AA, Woollings T, Knight J, Martin G, Hinton T (2010) Atmospheric blocking and mean biases in climate models. J Clim 23(23):6143–6152. doi:10.1175/2010jcli3728.1

    Article  Google Scholar 

  • Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley S, Williams K (2011) Improved Atlantic winter blocking in a climate model. Geophys Res Lett. doi:10.1029/2011gl049573

    Google Scholar 

  • Seager R, Battisti DS, Yin J, Gordon N, Naik N, Clement AC, Cane MA (2002) Is the Gulf Stream responsible for Europe’s mild winters? Q J R Meteorol Soc 128(586):2563–2586. doi:10.1256/qj.01.128

    Article  Google Scholar 

  • Shutts G (1983) The propagation of eddies in diffluent jetstreams: eddy vorticity forcing of ‘blocking’flow fields. Q J R Meteorol Soc 109(462):737–761

    Google Scholar 

  • Shutts G (1986) A case study of eddy forcing during an Atlantic blocking episode. Adv Geophys 29:135–162

    Article  Google Scholar 

  • Sillmann J, Croci-Maspoli M, Kallache M, Katz RW (2011) Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. J Clim 24(22):5899–5913. doi:10.1175/2011jcli4075.1

    Article  Google Scholar 

  • Simmons AJ, Hoskins BJ (1978) The life cycles of some nonlinear baroclinic waves. J Atmos Sci 35(3):414–432

    Article  Google Scholar 

  • Small RJ, Tomas RA, Bryan FO (2013) Storm track response to ocean fronts in a global high-resolution climate model. Clim Dyn 43(3–4):805–828. doi:10.1007/s00382-013-1980-9

    Google Scholar 

  • Swanson K (2001) Blocking as a local instability to zonally varying flows. Q J R Meteorol Soc 127(574):1341–1355

    Article  Google Scholar 

  • Tibaldi S, Molteni F (1990) On the operational predictability of blocking. Tellus A 42(3):343–365

    Article  Google Scholar 

  • Trenberth KE (1986) An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics. J Atmos Sci 43(19):2070–2087

    Article  Google Scholar 

  • Trigo RM, Trigo IF, DaCamara CC, Osborn TJ (2004) Climate impact of the European winter blocking episodes from the NCEP/NCAR Reanalyses. Clim Dyn. doi:10.1007/s00382-004-0410-4

    Google Scholar 

  • Tyrlis E, Hoskins BJ (2008a) The morphology of Northern Hemisphere blocking. J Atmos Sci 65(5):1653–1665. doi:10.1175/2007jas2338.1

    Article  Google Scholar 

  • Tyrlis E, Hoskins BJ (2008b) Aspects of a Northern Hemisphere atmospheric blocking climatology. J Atmos Sci 65(5):1638–1652. doi:10.1175/2007jas2337.1

    Article  Google Scholar 

  • Virts KS, Wallace JM, Hutchins ML, Holzworth RH (2015) Diurnal and seasonal lightning variability over the gulf stream and the gulf of Mexico. J Atmos Sci 72:2657–2665

    Article  Google Scholar 

  • Willison J, Robinson WA, Lackmann GM (2013) The importance of resolving mesoscale latent heating in the North Atlantic storm track. J Atmos Sci 70(7):2234–2250. doi:10.1175/jas-d-12-0226.1

    Article  Google Scholar 

  • Woollings T, Hoskins B, Blackburn M, Hassell D, Hodges K (2009) Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Clim Dyn 35(2–3):341–353. doi:10.1007/s00382-009-0554-3

    Google Scholar 

  • Woollings T, Franzke C, Hodson DLR, Dong B, Barnes EA, Raible CC, Pinto JG (2014) Contrasting interannual and multidecadal NAO variability. Clim Dyn. doi:10.1007/s00382-014-2237-y

    Google Scholar 

  • Yamazaki A, Itoh H (2013a) Vortex–vortex interactions for the maintenance of blocking. Part I: the selective absorption mechanism and a case study. J Atmos Sci 70(3):725–742. doi:10.1175/jas-d-11-0295.1

    Article  Google Scholar 

  • Yamazaki A, Itoh H (2013b) Vortex–vortex interactions for the maintenance of blocking. Part II: numerical experiments. J Atmos Sci 70(3):743–766. doi:10.1175/jas-d-12-0132.1

    Article  Google Scholar 

Download references

Acknowledgments

During this study we benefitted from thought-provoking discussions with Dr. Akira Yamazaki and Dr. Masahiro Watanabe. This work was supported by the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 22106008, 26287110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher H. O’Reilly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Reilly, C.H., Minobe, S. & Kuwano-Yoshida, A. The influence of the Gulf Stream on wintertime European blocking. Clim Dyn 47, 1545–1567 (2016). https://doi.org/10.1007/s00382-015-2919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2919-0

Keywords

Navigation