Skip to main content

Advertisement

Log in

Inhibition of mixed-layer deepening during winter in the northeastern Arabian Sea by the West India Coastal Current

  • Published:
Climate Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 10 August 2016

Abstract

Though the deep mixed layers (MLs) that form in the northeastern Arabian Sea (NEAS) during the winter monsoon (November–February) have been attributed to convective mixing driven by dry, cool northeasterly winds from the Indian subcontinent, data show that the deepest MLs occur in the northern NEAS and the maxima of latent-heat and net heat fluxes in the southern NEAS. We use an oceanic general circulation model to show that the deep MLs in the NEAS extend up to ~20°N till the end of December, but are restricted poleward of ~22°N (~23°N) in January (February). This progressive restriction of the deep mixed layers within the NEAS is due to poleward advection of water of lower salinity by the West India Coastal Current (WICC). The deep MLs are sustained till February in the northern NEAS because convective mixing deepens the ML before the waters of lower salinity reach this region and the wind stirring and convective overturning generate sufficient turbulent energy for the ML to maintain the depth attained in January. Though the atmospheric fluxes tend to cool the ML in the southern NEAS, this cooling is countered by the warming due to horizontal advection. Likewise, the cooling due to entrainment, which continues in the southern NEAS even as the ML shallows during January–February, is almost cancelled by the warming caused by a downwelling vertical velocity field. Therefore, the SST changes very little during December–February even as the ML shallows dramatically in the southern NEAS. These deep MLs of the NEAS also preclude a strong intraseasonal response to the intraseasonal variability in the fluxes. This role of horizontal advection implies that the ML depth in the NEAS is determined by an interplay of physical processes that are forced differently. The convective mixing depends on processes that are local to the region, but the advection is due to the WICC, whose seasonal cycle is primarily forced by remote winds. By inhibiting the formation of deep MLs in the southern NEAS, the WICC limits the region of formation of the high-salinity water masses of this region. Since the deep MLs in the NEAS have been linked to the high chlorophyll concentration there, our results imply that the conventional approach of averaging over boxes for studying the impact of physics on biogeochemistry can mask important details that are due to advection because it is the advective component of any budget that is most affected by the averaging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adcroft A, Campin JM (2004) Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Model 7:269–284

    Article  Google Scholar 

  • Amol P, Shankar D, Aparna SG, Shenoi SSC, Fernando V, Mukherjee A, Agarvedekar Y, Khalap ST, Satelkar NP (2012) Observational evidence from direct current measurements for propagation of remotely forced waves on the shelf off the west coast of India. J Geophys Res 117:C05017. doi:10.1029/2011JC007606

    Article  Google Scholar 

  • Amol P, Shankar D, Fernando V, Mukherjee A, Aparna SG, Fernandes R, Michael GS, Khalap ST, Satelkar NP, Agarvedekar Y, Gaonkar MG, Tari AP, Kankonkar A, Vernekar SP (2014) Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope. J Earth Syst Sci 123:1045–1074

    Article  Google Scholar 

  • Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE (2010) World Ocean Atlas 2009, vol 2. Salinity. Noaa atlas nesdis 69, NOAA, U.S. Gov. Printing Office, Washington, DC

  • Banse K (1968) Hydrography of the Arabian Sea shelf of India and Pakistan and effects on demersal fishes. Deep Sea Res 15:45–79

    Google Scholar 

  • Banse K (1984) Marine geology and oceanography of Arabian Sea and coastal Pakistan, Scientific and Academic Editions. Van Nostrand Reinhold Co., New York

    Google Scholar 

  • Banse K (1987) Seasonality of phytoplankton chlorophyll in the central and northern Arabian Sea. Deep Sea Res 34:713–723

    Article  Google Scholar 

  • Banse K, Postel JR (2009) Wintertime convection and ventilation of the upper pycnocline in the northernmost Arabian Sea. Geophys Monogr Ser 185:87–117. doi:10.1029/2008GM000704

    Google Scholar 

  • Bower A, Hunt HD, Price JF (2000) Character and dynamics of the Red Sea and Persian Gulf outflows. J Geophys Res 105:6387–6414

    Article  Google Scholar 

  • Bryan K, Lewis LJ (1979) A water mass model of the world ocean. J Geophys Res 84:2503–2517

    Article  Google Scholar 

  • Carruthers JN, Gogate SS, Naidu JR, Laevastu T (1959) Shorewards upslope of the layer of minimum oxygen off Bombay: it influence on marine biology, particularly fisheries. Nature 183:1084–1087

    Article  Google Scholar 

  • Chatterjee A, Shankar D, Shenoi SSC, Reddy GV, Michael GS, Ravichandran M, Gopalkrishna VV, Rao EPR, Bhaskar TVSU, Sanjeevan VN (2012) A new atlas of temperature and salinity for the North Indian Ocean. J Earth Syst Sci 121:559–593. doi:10.1007/s12040-012-0191-9

    Article  Google Scholar 

  • Chatterjee A, Shankar D, McCreary JP, Vinayachandran PN (2013) Yanai waves in the western equatorial Indian Ocean. J Geophys Res 118:1556–1570. doi:10.1002/jgrc.20121

    Article  Google Scholar 

  • Cronin MF, Sprintall J (2001) Wind and buoyancy-forced upper ocean. In: Steele JH, Turekian KK, Thorpe SA (eds) Encyclopedia of ocean science. Academic Press, Waltham. doi:10.1006/rwos.2001.0157

    Google Scholar 

  • Gibson JK, Kallberg P, Uppala S, Hernandez A, Serrano ANE (1997) ECMWF reanalysis project report series: 1. ERA-15 description. Technical report, European Centre for Medium-Range Weather Forecasting

  • Gomes HR, Goes JI, Matondkar SGP, Buskey EJ, Basu S, Parab S, Thoppil P (2014) Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nat Commun. doi:10.1038/ncomms5862

  • Griffies SM (2009) Elements of MOM4p1. GFDL ocean group. Technical report 6, NOAA/Geophysical Fluid Dynamics Laboratory. http://www.gfdl.noaa.gov/

  • Griffies SM, Hallberg RW (2000) Biharmonic friction with a Smagorinsky viscosity for use in large-scale eddy-permitting ocean models. Mon Weather Rev 128:2935–2946

    Article  Google Scholar 

  • Han W (1999) Influence of salinity on dynamics, thermodynamics and mixed-layer physics in the Indian Ocean. PhD thesis, Nova Southeastern University

  • Han W, McCreary JP, Kohler KE (2001) Influence of precipitation minus evaporation and Bay of Bengal rivers on dynamics, thermodynamics, and mixed layer physics in the upper Indian Ocean. J Geophys Res 106:6895–6916

    Article  Google Scholar 

  • Hood RR, Wiggert JD, Naqvi SWA (2009) Indian ocean research: opportunities and challenges. Geophys Monogr Ser 185:409–428. doi:10.1029/2008GM000714

    Google Scholar 

  • Jackett DR, McDougall TJ, Feistel R, Wright DG, Griffies SM (2006) Algorithms for density, potential temperature, conservative temperature, and freezing temperature of seawater. J Atmos Ocean Technol 23:1709–1728

    Article  Google Scholar 

  • Koné V, Aumont O, Lévy M, Resplandy L (2009) Physical and biogeochemical controls of the phytoplankton seasonal cycle in the Indian Ocean: a modeling study. Geophys Monogr Ser 185:147–166. doi:10.1029/2008GM000700

    Google Scholar 

  • Kraus EB, Turner JS (1967) A one-dimensional model of the seasonal thermocline. II: the general theory and its consequences. Tellus 119:98–106

    Article  Google Scholar 

  • Kurian J, Vinayachandran PN (2007) Mechanisms of formation of Arabian Sea mini warm pool in a high-resolution OGCM. J Geophys Res 112:C05009. doi:10.1029/2006JC003631

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Levine RC, Turner AG (2011) Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Clim Dyn 38:2167–2190. doi:10.1007/s00382-011-1096-z

    Article  Google Scholar 

  • Levine RC, Turner AG, Marathayil D, Martin GM (2013) The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall. Clim Dyn 41:155–172. doi:10.1007/s00382-012-1656-x

    Article  Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAA professional paper 13, U.S. Government Printing Office, Washington, DC, 173 pp

  • Lévy M, Andre JM, Shankar D, Durand F, Shenoi SSC (2006) A quantitative method for describing the seasonal cycles of surface chlorophyll in the Indian Ocean. In: Frouin RJ, Agarwal VK, Kawamura H, Nayak S, Pan D (eds) Remote sensing of the marine environment, Proceedings of SPIE, vol 6406

  • Lévy M, Shankar D, Andre JM, Shenoi SSC, Durand F, Montégut CD (2007) Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms. J Geophys Res 112:C12014. doi:10.1029/2007JC004090

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2010) World Ocean Atlas 2009, vol 1: temperature. Noaa atlas nesdis 68, NOAA, U.S. Gov. Printing Office, Washington, DC

  • Lukas RB, Lindström EJ (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res 96:3343–3357

    Article  Google Scholar 

  • Madhupratap M, Prasannakumar S, Bhattathiri PMA, Raghukumar S, Nair KKC, Ramaiah N (1996) Mechanism of biological response to winter cooling in the northeastern Arabian Sea. Nature 384:549–552

    Article  Google Scholar 

  • Marathayil D, Turner AG, Shaffrey LC, Levine RC (2013) Systematic winter sea-surface temperature biases in the northern Arabian Sea in HiGEM and the CMIP3 models. Environ Res Lett 8:014028. doi:10.1088/1748-9326/8/1/014028

    Article  Google Scholar 

  • Mariano AJ, Ryan EH, Perkins BD, Smithers S (1995) The Mariano global surface velocity analysis 1.0. Technical report USCG report CG-D-34-95, USCG

  • McCreary JP, Kundu PK, Molinary RL (1993) A numerical investigation of the dynamics, thermodynamics and mixed layer processes in the Indian Ocean. Prog Oceanogr 31:181–224

    Article  Google Scholar 

  • McCreary JP, Kohler KE, Hood RR, Olson DB (1996) A four-component ecosystem model of biological activity in the Arabian Sea. Prog Oceanogr 37:193–240

    Article  Google Scholar 

  • McCreary JP, Kohler KE, Hood RR, Smith S, Kindle J, Fischer AS, Weller RA (2001) Influences of diurnal and intraseasonal forcing on mixed-layer and biological variability in the central Arabian Sea. J Geophys Res 106:7139–7155

    Article  Google Scholar 

  • McCreary JP, Murtugudde R, Vialard J, Vinayachandran PN, Wiggert JD, Hood RR, Shankar D, Shetye S (2009) Biophysical processes in the Indian Ocean. Geophys Monogr Ser 185:9–32. doi:10.1029/2008GM000768

    Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 24:163–187

    Google Scholar 

  • Morel A, Antoine D (1994) Heating rate within the upper ocean in relation to its biooptical state. J Phys Oceanogr 24:1652–1665

    Article  Google Scholar 

  • Naqvi SWA (1991) Geographical extent of denitrification in the Arabian Sea in relation to some physical processes. Oceanol Acta 14:281–290

    Google Scholar 

  • Naqvi SWA, Narvekar PV, Desa E (2006) Coastal biogeochemical processes in the north Indian Ocean. Coastal segment (14, S–W). In: Robinson AR, Brink KH (eds) The Sea, vol 14, chapter 19, Wiley, Hoboken, pp 723–781

  • Pankajakshan T, Ramaraju DV (1987) Intrusion of bay of bengal water into the Arabian sea along the west coast of india during northeast monsoon. In: Rao TSS, Natarajan R, Desai BN, Swami GN, Bhat SR (eds) Contributions in marine sciences. Dr. S. Z. Quasim Sastyabdapurthi felicitation volume. National Institute of Oceanography, Dona Paula, Goa, India, pp 237–244

    Google Scholar 

  • Papa F, Durand F, Rossow WB, Rahman A, Bala S (2010) Satellite altimeter-derived monthly discharge of the Ganga–Brahmaputra river and its seasonal to interannual variations from 1993 to 2008. J Geophys Res 115:C12013. doi:10.1029/2009JC006075

    Article  Google Scholar 

  • Prasad TG, Ikeda M (2002a) A numerical study of the seasonal variability of Arabian Sea high-salinity water. J Geophys Res 107:3197. doi:10.1029/2001JC001139

    Article  Google Scholar 

  • Prasad TG, Ikeda M (2002b) The wintertime water mass formation in the northern Arabian Sea: a model study. J Phys Oceanogr 32:1028–1040

    Article  Google Scholar 

  • Prasannakumar S, Prasad TG (1996) Winter cooling in the northern Arabian Sea. Curr Sci 71:834–841

    Google Scholar 

  • Prasannakumar S, Prasad TG (1999) Formation and spreading of Arabian Sea high-salinity water mass. J Geophys Res 104:1455–1464

    Article  Google Scholar 

  • Praveenkumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation. Clim Dyn 38:1521–1543. doi:10.1007/s00382-011-1115-0

    Article  Google Scholar 

  • Premkumar K, Ravichandran M, Kalsi SR, Sengupta D, Gadgil S (2000) First results from a new observational system over the Indian seas. Curr Sci 78:323–331

    Google Scholar 

  • Qiu B, Kelly KA (1993) Upper-ocean heat balance in the Kuroshio extension region. J Phys Oceanogr 23:2027–2041

    Article  Google Scholar 

  • Rao SA, Gopalakrishna VV, Shetye SR, Yamagata T (2002) Why were cool SST anomalies absent in the Bay of Bengal during the 1997 Indian Ocean Dipole event? Geophys Res Lett 29:1555. doi:10.1029/2001GL014645

    Article  Google Scholar 

  • Ratheesh S, Mankad B, Basu S, Kumar R, Sharma R (2012) Assessment of satellite-derived sea-surface salinity in the Indian Ocean. IEEE Geosci Remote Sens Lett 10:428–431. doi:10.1109/LGRS.2012.2207943

    Article  Google Scholar 

  • Rochford DJ (1964) Salinity maxima in the upper 1000 m of the north Indian Ocean. Aust J Mar Freshw Res 15:1–24

    Article  Google Scholar 

  • Röske F (2001) An atlas of surface fluxes based on the ECMWF Reanalysis—a climatological data set to force global ocean general circulation models. Technical report 323, Max-Planck Institüt für Meteorologie, Hamburg, Germany

  • Roy R, Anil AC (2015) Complex interplay of physical forcing and Prochlorococcus population in ocean. Oceanography. doi:10.1016/j.pocean.2015.06.010

  • Roy R, Chithari R, Kulkarni V, Krishna MS, Sarma VVSS, Anil AC (2015) CHEMTAX-derived phytoplankton community structure associated with temperature fronts in the northeastern Arabian Sea. J Mar Syst 144:81–91. doi:10.1016/j.jmarsys.2014.11.009

    Article  Google Scholar 

  • Sandeep S, Ajayamohan RS (2014) Origin of cold bias over the Arabian Sea in climate models. Sci Rep 4. doi:10.1038/srep06403

  • Schott FA, McCreary JP (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123

    Article  Google Scholar 

  • Sengupta D, Goswami BN, Senan R (2001) Coherent intraseasonal oscillation of ocean and atmosphere during the Asian summer monsoon. Geophys Res Lett 28:4127–4130

    Article  Google Scholar 

  • Shankar D (1998) Low-frequency variability of sea level along the coast of India. PhD thesis, Goa University, Goa, India

  • Shankar D (2000) Seasonal cycle of sea level and currents along the coast of India. Curr Sci 78:279–288

    Google Scholar 

  • Shankar D, Shetye SR (1997) On the dynamics of the Lakshadweep high and low in the southeastern Arabian Sea. J Geophys Res 102:12,551–12,562

    Article  Google Scholar 

  • Shankar D, Vinayachandran P, Unnikrishnan AS (2002) The monsoon currents in the north Indian Ocean. Prog Oceanogr 52:63–120

    Article  Google Scholar 

  • Shankar D, Gopalakrishna VV, Shenoi SSC, Durand F, Shetye SR, Rajan CK, Johnson Z, Araligidad N, Michael GS (2004) Observational evidence for westward propagation of temperature inversions in the southeastern Arabian Sea. Geophys Res Lett 31:L08305. doi:10.1029/2004GL019652

    Article  Google Scholar 

  • Shankar D, Aparna SG, McCreary JP, Suresh I, Neetu S, Durand F, Shenoi SSC, Saafani MAA (2010) Minima of interannual sea-level variability in the Indian Ocean. Prog Oceanogr 84(3–4):225–241. doi:10.1016/j.pocean.2009.10.002

    Article  Google Scholar 

  • Sharma GS (1968) Seasonal variation of some hydrographic properties of the shelf waters off the west coast of India. Bull Nat Inst Sci India 38:263–276

    Google Scholar 

  • Shenoi SSC, Shetye SR, Gouveia AD, Michael GS (1993) Salinity extrema in the Arabian Sea. In: Ittekot V, Nair RR (eds) Monsoon biogeochemistry, Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, vol 76, SCOPE/UNEP Sonderband, pp 37–49

  • Shenoi SSC, Shankar D, Shetye SR (2002) Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: implications for the summer monsoon. J Geophys Res 107. doi:10.1029/2000JC000679

  • Shenoi SSC, Shankar D, Shetye SR (2004) Remote forcing annihilates barrier layer in southeastern Arabian Sea. Geophys Res Lett L05307. doi:10.1029/2003GL019270

  • Shetye SR, Almeida AM (1985) An examination of the factors that influence the monthly-mean sea level along the coast of India. In: IOC/Unesco workshop on regional co-operation in marine science in the central Indian ocean and adjacent seas and gulfs, Colombo, Sri Lanka, IOC workshop reports, vol 37, pp 87–104

  • Shetye SR, Gouveia AD (1998) Coastal circulation in the north Indian Ocean. Coastal segment (14, S–W). In: Robinson AR, Brink KH (eds) The Sea, vol 11, chapter 18, Wiley, Hoboken, pp 523–556

  • Shetye SR, Shenoi SSC (1988) Seasonal cycle of surface circulation in the coastal north Indian Ocean. Proc Indian Acad Sci 97:53–62

    Google Scholar 

  • Shetye SR, Gouveia AD, Shenoi SSC, Sundar D, Michael GS, Almeida AM, Santanam K (1990) Hydrography and circulation off the west coast of India during the southwest monsoon 1987. J Mar Res 48:359–378

    Article  Google Scholar 

  • Shetye SR, Gouveia AD, Shenoi SSC, Michael GS, Sundar D, Almeida AM, Santanam K (1991a) The coastal current off western India during the northeast monsoon. Deep Sea Res 38:1517–1529

    Article  Google Scholar 

  • Shetye SR, Shenoi SSC, Gouveia AD, Michael GS, Sundar D, Nampoothiri G (1991b) Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon. Cont Shelf Res 11:1397–1408

    Article  Google Scholar 

  • Shetye SR, Gouveia AD, Shenoi SSC (1992) Does winter cooling lead to the subsurface salinity minimum off Saurashtra, India. In: Desai BN (ed) Oceanography of the Indian Ocean. Oxford and India Book House, Calcutta, pp 617–625

    Google Scholar 

  • Shetye SR, Gouveia AD, Shenoi SSC, Sundar D, Michael GS, Nampoothiri G (1993) The western boundary current of the seasonal subtropical gyre in the Bay of Bengal. J Geophys Res 98:945–954

    Article  Google Scholar 

  • Shetye SR, Gouveia AD, Shankar D, Shenoi SSC, Vinayachandran PN, Sundar D, Michael GS, Nampoothiri G (1996) Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. J Geophys Res 101:14,011–14,025

    Article  Google Scholar 

  • Shetye SR, Suresh I, Shankar D, Sundar D, Jayakumar S, Mehra P, Prabhudesai RG, Pednekar PS (2008) Observational evidence for remote forcing of the West India Coastal Current. J Geophys Res 113:C11001. doi:10.1029/2008JC004874

    Article  Google Scholar 

  • Sindhu B, Suresh I, Unnikrishnan AS, Bhatkar NV, Neetu S, Michael GS (2007) Improved bathymetric datasets for the shallow water regions in the Indian Ocean. J Earth Syst Sci 116:261–274

    Article  Google Scholar 

  • Stacey MW, Pond S, Nowak ZP (1995) A numerical model of the circulation in Knight Inlet, British Columbia, Canada. J Phys Oceanogr 25:1037–1062

    Article  Google Scholar 

  • Subrahmanyam B, Grunseich G, Nyadjro ES (2013) Preliminary SMOS salinity measurements and validation in the Indian Ocean. IEEE Trans Geosci Remote Sens 51:19–27. doi:10.1109/TGRS.2012.2199122

    Article  Google Scholar 

  • Sweeney C, Gnanadesikan A, Griffies SM, Harrison MJ, Rosati AJ, Samuels BL (2005) Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J Phys Oceanogr 35:1103–1119. doi:10.1175/JPO2740.1

    Article  Google Scholar 

  • Tsontos V (2014) Aquarius user guide: aquarius dataset version 3.0, guide version 6.0, JPL-D-70012, AQ-010-UG-0008. Physical Oceanography Distributed Active Archive Center (PO.DAAC), Jet Propulsion Laboratory, Pasadena, California, USA

  • Turner AG, Joshi M, Robertson ES, Woolnough SJ (2012) The effect of Arabian Sea optical properties on SST biases and the South Asian summer monsoon in a coupled GCM. Clim Dyn 39:811–826. doi:10.1007/s00382-011-1254-3

    Article  Google Scholar 

  • Valsala V (2009) Different spreading of Somali and Arabian coastal upwelled waters in the northern Indian Ocean: a case study. J Oceanogr 65:803–816

    Article  Google Scholar 

  • Varma KK, Das VK, Gouveia AD (1980) Thermohaline structure and watermasses in the northern Arabian Sea during February–April. Indian J Mar Sci 9:148–155

    Google Scholar 

  • Vialard J, Delecluse P (1998) An OGCM study for the TOGA decade. Part II: Barrier-layer formation and variability. J Phys Oceanogr 28:1089–1106

    Article  Google Scholar 

  • Vinayachandran PN, Kurian J, Neema CP (2007) Indian Ocean response to anomalous conditions during 2006. Geophys Res Lett 34. doi:10.1029/2007GL030194

  • Vipin P, Sarkar K, Aparna SG, Shankar D, Sarma VVSS, Gracias DG, Krishna MS, Srikanth G, Mandal R, Rao EPR, Rao NS (2015) Evolution and sub-surface characteristics of an SST filament and front in the northeastern Arabian Sea during November–December 2012. J Mar Syst 150. doi:10.1016/j.jmarsys.2015.05.003

  • Vörösmarty CJ, Fekete B, Tucker BA (1996) River discharge database, version 1.0 (RivDIS v1.0), vols 0–6, a contribution to IHP-V Theme 1, technical documents in hydrology series. Technical report, UNESCO, Paris

  • Wiggert JD, Jones BH, Hickey TD, Weller RA, Brink KH, Marra J, Codispoti LA (2000) The northeast monsoon’s impact on mixing, phytoplankton biomass and nutrient cycling in the Arabian Sea. Deep Sea Res Part II 47:1353–1385

    Article  Google Scholar 

  • Wiggert JD, Murtugudde RG, McClain CR (2002) Processes controlling interannual variations in wintertime (northeast monsoon) biomass in the central Arabian Sea. Deep Sea Res Part II 49:2319–2343

    Article  Google Scholar 

  • Wiggert JD, Hood RR, Banse K, Kindle JC (2005) Monsoon-driven biogeochemical processes in the Arabian Sea. Prog Oceanogr 65:176–213

    Article  Google Scholar 

  • Wiggert JD, Murtugudde RG, Christian JR (2006) Annual ecosystem variability in the tropical Indian Ocean: results of a coupled bio-physical ocean general circulation model. Deep Sea Res Part II 53:644–676

    Article  Google Scholar 

  • Wiggert JD, Vialard J, Behrenfeld MJ (2009) Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean dipole during the SeaWiFS era. Geophys Monogr Ser 185:385–407. doi:10.1029/2008GM000776

    Google Scholar 

  • Wyrtki K (1971) Oceanographic atlas of the international Indian ocean expedition. National Science Foundation, Washington, DC, 531 pp

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the OCEAN FINDER programme of CSIR-NIO. We thank S. R. Shetye for inspiring this programme, K. Banse for pointing (D. Shankar) to the need for the NEAS to be “looked at by young and fresh minds”, A. C. Anil for several useful discussions on the ecosystem dynamics of the region, A. Mukherjee for his assistance with the model, and Amol Prakash for help with Ferret, which has been used extensively for analysis and graphics. Comments from Raghu Murtugudde, Theodore Durland, Dileep Kumar, and Kerala Varma on a preprint and the critical comments of two anonymous reviewers helped improve the manuscript. The model was run on the high-performance-computing (HPC) systems at CSIR-CMMACS and CSIR-NIO; the support provided by Ashalata Marandi and the staff handling these HPC systems is gratefully acknowledged. R. Remya acknowledges the Council of Scientific and Industrial Research (CSIR; for financial support) and AcSIR; P. N. Vinayachandran and A. Behera acknowledge funding from INCOIS under the HOOFS (High-resolution Operational Ocean Forecast and reanalysis System) programme. This is CSIR-NIO contribution 5822 and ESSO-INCOIS contribution 233.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Shankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, D., Remya, R., Vinayachandran, P.N. et al. Inhibition of mixed-layer deepening during winter in the northeastern Arabian Sea by the West India Coastal Current. Clim Dyn 47, 1049–1072 (2016). https://doi.org/10.1007/s00382-015-2888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2888-3

Keywords

Navigation