Skip to main content

Advertisement

Log in

Short-term variability in the dates of the Indian monsoon onset and retreat on the southern and northern slopes of the central Himalayas as determined by precipitation stable isotopes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This project launched the first study to compare the stable isotopes (δ18O and δD) in daily precipitation at Kathmandu (located on the southern slope of the central Himalayas) and Tingri (located on the northern slope). The results show that low δ18O and δD values of summer precipitation at the two stations were closely related to intense convection of the Indian monsoon. However, summer δ18O and δD values at Tingri were lower than those at Kathmandu, a result of the lift effect of the Himalayas, coupled with convection disturbances and lower temperatures at Tingri. In winter, the relatively high δ18O and δD values at the two stations appears to have resulted from the influence of the westerlies. Compared with those during the summer, the subsidence of the westerlies and northerly winds resulted in relatively high δ18O and δD values of the winter precipitation at Tingri. Winter δ18O and δD values at Kathmandu far exceeded those at Tingri, due to more intense advection of the southern branch of the westerlies, and higher temperatures and relative humidity at Kathmandu. The detailed differences in stable isotopes between the two stations follow short-term variability in the onset date of the Indian monsoon and its retreat across the central Himalayas. During the sampling period, the Indian monsoon onset at Tingri occurred approximately 1 week later than that at Kathmandu. However, the retreat at Tingri began roughly 3 days earlier. Clearly, the duration of the Indian monsoon effects last longer at Kathmandu than that at Tingri. Our findings also indicate that the India monsoon travels slowly northward across the central Himalayas due to the blocking of the Himalayas, but retreats quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamson GCD, Nash DJ (2013) Long-term variability in the date of monsoon onset over western India. Clim Dyn 40:2589–2603. doi:10.1007/s00382-012-1494-x

    Google Scholar 

  • Aggarwal PK, Fröhlich K, Kulkarni KM, Gourcy LL (2004) Stable isotope evidence for moisture sources in the Asian summer monsoon under present and past climate regimes. Geophys Res Lett 31:L08203. doi:10.1029/2004GL019911

    Google Scholar 

  • Aizen V, Aizen E, Melack J, Martma T (1996) Isotopic measurements of precipitation on central Asian glaciers (southeastern Tibet, northern Himalayas, central Tien Shan). J Geophys Res 101(D4):9185–9196

    Article  Google Scholar 

  • Araguás-Araguás L, Froehlich K, Rozanski K (1998) Stable isotope composition of precipitation over southeast Asia. J Geophys Res 103(D22):28721–28742

    Article  Google Scholar 

  • Benn DI, Owen LA (1998) The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. J Geol Soc 155:353–363

    Article  Google Scholar 

  • Bershaw J, Penny SM, Garzione CN (2012) Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: implications for estimates of paleoelevation and paleoclimate. J Geophys Res 117:D02110. doi:10.1029/2011JD016132

    Article  Google Scholar 

  • Bhattacharya SK, Froehlich K, Aggarwal PK, Kulkarni KM (2003) Isotopic variation in Indian Monsoon precipitation: records from Bombay and New Delhi. Geophys Res Lett 30:2285. doi:10.1029/2003GL018453

    Article  Google Scholar 

  • Birks SJ, Edwards TWD (2009) Atmospheric circulation controls on precipitation isotope–climate relations in western Canada. Tellus B 61:566–576. doi:10.1111/j.1600-0889.2009.00423.x

    Article  Google Scholar 

  • Brand WA, Geilmann H, Crosson ER, Rella CW (2009) Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry: a case study on δ2H and δ18O of pure water samples and alcohol/water mixture. Rapid Commun Mass Spectrom 23:1879–1884

    Article  Google Scholar 

  • Breitenbach SFM, Adkins JF, Meyer H, Marwan N, Kumar KK, Haug GH (2010) Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet Sci Lett 292:212–220

    Article  Google Scholar 

  • Burnett AW, Mullins HT, Patterson WP (2004) Relationship between atmospheric circulation and winter precipitation δ18O in central New York State. Geophys Res Lett 31:L22209. doi:10.1029/2004GL021089

    Article  Google Scholar 

  • Cai Y, Cheng H, An Z, Edwards RL, Wang X, Tan L, Wang J (2010) Large variations of oxygen isotopes in precipitation over south-central Tibet during Marine Isotope Stage 5. Geology 38:243–246

    Article  Google Scholar 

  • Callow N, McGowan H, Warren L, Speirs J (2014) Drivers of precipitation stable oxygen isotope variability in an alpine setting, Snowy Mountains, Australia. J Geophys Res 119:3016–3031. doi:10.1002/2013JD020710

    Article  Google Scholar 

  • Chhetri TB, Yao T, Yu W, Ding L, Joswiak D, Tian L, Devkota LP, Qu D (2014) Stable isotopic compositions of precipitation events from Kathmandu, southern slope of the Himalayas. Chin Sci Bull 59(34):4838–4846

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, New York, p 47

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric water. Science 133:1702–1903

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Deshpande RD, Bhattacharya SK, Jani RA, Gupta SK (2003) Distribution of oxygen and hydrogen isotopes in shallow groundwaters from Southern India: influence of a dual monsoon system. J Hydrol 271:226–239

    Article  Google Scholar 

  • Deshpande RD, Maurya AS, Kumar B, Sarkar A, Gupta SK (2010) Rain-vapor interaction and vapor source identification using stable isotopes from semiarid western India. J Geophys Res 115:D23311. doi:10.1029/2010JD014458

    Article  Google Scholar 

  • Farlin J, Lai C-T, Yoshimura K (2013) Influence of synoptic weather events on the isotopic composition of atmospheric moisture in a coastal city of the western United States. Water Resour Res 49:1–12

    Article  Google Scholar 

  • Farquhar GD, Gan KS (2003) On the progressive enrichment of the oxygen isotopic composition of water along a leaf. Plant Cell Environ 26:1579–1597. doi:10.1046/j.0016-8025.2001.00829.x-i1

    Google Scholar 

  • Fasullo J, Webster PJ (2003) A hydrological definition of Indian monsoon onset and withdrawal. J Clim 16:3200–3211

    Article  Google Scholar 

  • Field RD, Jones DBA, Brown DP (2010) Effects of postcondensation exchange on the isotopic composition of water in the atmosphere. J Geophys Res 115:D24305. doi:10.1029/2010JD014334

    Article  Google Scholar 

  • Fujinami H, Nomura S, Yasunari T (2005) Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer. SOLA 1:49–52

    Article  Google Scholar 

  • Gao D, Zou H, Wang W (1985) Influence of water vapor pass along the Yarlungzangbo River on precipitation (in Chinese with English abstract). Mount Res 3(4):239–249

    Google Scholar 

  • Gao J, Masson-Delmotte V, Yao T, Tian L, Risi C, Hoffmann G (2011) Precipitation water stable isotopes in the south Tibetan Plateau: observations and modeling. J Clim 24:3161–3178

    Article  Google Scholar 

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24:225–262

    Article  Google Scholar 

  • Guan H, Zhang X, Skrzypek G, Sun Z, Xu X (2013) Deuterium excess variations of rainfall events in a coastal area of South Australia and its relationship with synoptic weather systems and atmospheric moisture sources. J Geophys Res Atmos 118:1123–1138. doi:10.1002/jgrd.50137

    Article  Google Scholar 

  • Gupta SK, Deshpande RD, Bhattacharya SK, Jani RA (2005) Groundwater δ18O and δD from central Indian Peninsula: influence of the Arabian Sea and the Bay of Bengal branches of the summer monsoon. J Hydrol 303:38–55

    Article  Google Scholar 

  • Hoffmann G, Heimann M (1997) Water isotope modeling in the Asian monsoon region. Quat Int 37:115–128

    Article  Google Scholar 

  • Johnsen SJ, Dansgaard W, Clausen HB, Langway CC Jr (1972) Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature 235:429–434

    Article  Google Scholar 

  • Johnson KR, Ingram BL (2004) Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimatic reconstructions. Earth Planet Sci Lett 220:365–377

    Article  Google Scholar 

  • Joseph PV, Sooraj KP, Rajan CK (2006) The summer monsoon onset process over south Asia and an objective method for the date of monsoon onset over Kerala. Int J Climatol 26:115–128

    Article  Google Scholar 

  • Kang S, Karl JK, Paul AM, Qin D, Yao T (2002) Stable-isotopic composition of precipitation over the northern slope of the central Himalaya. J Glaciol 48(163):519–526

    Article  Google Scholar 

  • Kong Y, Pang Z, Froehlich K (2013) Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus B 65:19251. doi:10.3402/tellusb.v65i0.19251

    Article  Google Scholar 

  • Kumar B, Rai SP, Saravana Kumar U, Verma SK, Garg P, Vijaya Kumar SV, Jaiswal R, Purendra BK, Kumar SR, Pande NG (2010) Isotopic characteristics of Indian precipitation. Water Resour Res 46:W12548. doi:10.1029/2009WR008532

    Article  Google Scholar 

  • Kurita N (2013) Water isotopic variability in response to mesoscale convective system over the tropical ocean. J Geophys Res 118:10376–10390

    Google Scholar 

  • Lee J-E, Fung I (2008) “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol Process 22:1–8

    Article  Google Scholar 

  • Lekshmy PR, Midhun M, Ramesh R, Jani RA (2014) 18O depletion in monsoon rain relates to large scale organized convection rather than the amount of rainfall. Sci Rep 4:5661. doi:10.1038/srep05661

    Article  Google Scholar 

  • Li J, Zhang L (2009) Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models. Clim Dyn 32:935–968

    Article  Google Scholar 

  • Lin Z, Wu X (1990) A preliminary analysis about the tracks of moisture transportation on the Qinghai-Xizang Plateau (in Chinese with English abstract). Geogr Res 9(3):30–49

    Google Scholar 

  • Liu Z, Tian L, Yao T, Yu W (2010) Characterization of precipitation δ18O variation in Nagqu, central Tibetan Plateau and its climatic controls. Theor Appl Climatol 99:95–104

    Article  Google Scholar 

  • Liu X, Zeng X, Leavitt SW, Wang W, An W, Xu G, Sun W, Wang Y, Qin D, Ren J (2013) A 400-year tree-ring δ18O chronology for the southeastern Tibetan Plateau: implications for inferring variations of the regional hydroclimate. Glob Planet Change 104:23–33

    Article  Google Scholar 

  • Liu J, Song X, Yuan G, Sun X, Yang L (2014) Stable isotopic compositions of precipitation in China. Tellus B 66:22567. doi:10.3402/tellusb.v66.22567

    Google Scholar 

  • Managave SR, Sheshshayee MS, Bhattacharyya A, Ramesh R (2011) Intra-annual variations of teak cellulose δ18O in Kerala, India: implications to the reconstruction of past summer and winter monsoon rains. Clim Dyn 37:555–567

    Article  Google Scholar 

  • Managave SR, Jani RA, Rao TN, Khadgarai S, Ramesh R (2014) Intra-event isotope and drop size data reveal post-condensation effects in tropical rain. American Geophysical Union, Fall Meeting, abstract #PP31D-1161

  • Midhun M, Lekshmy PR, Ramesh R (2013) Hydrogen and oxygen isotopic compositions of water vapor over the Bay of Bengal during monsoon. Geophys Res Lett 40:6324–6328

    Article  Google Scholar 

  • Murakami T (1987) Effect of the Tibetan Plateau. In: Chang CP, Krishnamurti TN (eds) Monsoon meteorology. Oxford University Press, New York, pp 235–270

    Google Scholar 

  • Nelson ST (2000) A simple, practical methodology for routine VSMOW/SLAP normalization of water samples analyzed by continuous flow methods. Rapid Commun Mass Spectrom 14:1044–1046

    Article  Google Scholar 

  • Noone D (2012) Pairing measurements of the water vapor isotope ratio with humidity to deduce atmospheric moistening and dehydration in the tropical midtroposphere. J Clim 25:4476–4494

    Article  Google Scholar 

  • Pai DS, Bhan SC (2013) Monsoon 2012: a report (IMD Met. monograph: synoptic meteorology no. 13/2013). India Meteorological Department, National Climate Center, Pune, India

  • Pai DS, Bhan SC (2014) Monsoon 2013: a report (IMD Met. monograph no: ESSO/IMD/SYNOPTIC MET/01-2014/15). India Meteorological Department, National Climate Center, Pune, India

  • Pai DS, Rajeevan MN (2009) Summer monsoon onset over Kerala: new definition and prediction. J Earth Syst Sci 118:123–135

    Article  Google Scholar 

  • Pang H, Hou S, Kaspari S, Mayewski PA (2014) Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas. Cryosphere 8:289–301

    Article  Google Scholar 

  • Posmentier ES, Feng X, Zhao M (2004) Seasonal variations of precipitation δ18O in eastern Asia. J Geophys Res 109:D23106. doi:10.1029/2004JD004510

    Article  Google Scholar 

  • Prodhomme C, Terray P, Masson S, Boschat G, Izumo T (2015) Oceanic factors controlling the Indian summer monsoon onset in a coupled model. Clim Dyn 44:977–1002

    Article  Google Scholar 

  • Purushothaman P, Rao MS, Kumar B, Rawat YS, Krishan G, Devi Pooja (2014) Comparison of two methods for ground level vapour sampling and influence of meteorological parameters on its stable isotopic composition at Roorkee, India. Hydrol Process 28:882–894

    Article  Google Scholar 

  • Puviarasan N, Sharma AK, Ranalkar Manish, Giri RK (2015) Onset, advance and withdrawal of southwest monsoon over Indian subcontinent: a study from precipitable water measurement using ground based GPS receivers. J Atmos Sol-Terr Phy 122:45–57

    Article  Google Scholar 

  • Raghavan K (1973) Break-monsoon over India. Mon Weather Rev 101(1):33–42

    Article  Google Scholar 

  • Raju PVS, Bhatla R (2014) Evolution of withdrawal features of the southwest monsoon over India. Int J Climatol 34:1860–1872

    Article  Google Scholar 

  • Raju PVS, Mohanty UC, Bhatla R (2005) Onset characteristics of the southwest monsoon over India. Int J Climatol 25:167–182

    Article  Google Scholar 

  • Raju PVS, Mohanty UC, Bhatla R (2007) Interannual variability of onset of the summer monsoon over India and its prediction. Nat Hazards 42:287–300

    Article  Google Scholar 

  • Rao PLS, Mohanty UC, Ramesh KJ (2005) The evolution and retreat features of the summer monsoon over India. Meteorol Appl 12:241–255

    Article  Google Scholar 

  • Risi C, Bony S, Vimeux F (2008) Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J Geophys Res 113:D19306. doi:10.1029/2008JD009943

    Article  Google Scholar 

  • Risi C, Landais A, Winkler R, Vimeux F (2013) Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model? Clim Past 9:2173–2193

    Article  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records geophysical monograph 78. American Geophysical Union, Washington, DC, pp 1–36

    Chapter  Google Scholar 

  • Saravana Kumar U, Kumar B, Rai SP, Sharma S (2010) Stable isotope ratios in precipitation and their relationship with meteorological conditions in the Kumaon Himalayas, India. J Hydrol 391:1–8

    Article  Google Scholar 

  • Sengupta S, Sarkar A (2006) Stable isotope evidence of dual (Arabian Sea and Bay of Bengal) vapour sources in monsoonal precipitation over north India. Earth Planet Sci Lett 250:511–521

    Article  Google Scholar 

  • Sinclair KE, Marshall SJ, Moran TA (2011) A Lagrangian approach to modelling stable isotopes in precipitation over mountainous terrain. Hydrol Process 25:2481–2491

    Article  Google Scholar 

  • Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin P-N (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science 289:1916–1919

    Article  Google Scholar 

  • Tian L, Masson-Delmotte V, Stievenard M, Yao T, Jouzel J (2001) Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res 106(D22):28081–28088

    Article  Google Scholar 

  • Tian L, Yao T, Schuster PF, White JWC, Ichiyanagi K, Pendall E, Pu J, Yu W (2003) Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J Geophys Res 108(D9):4293. doi:10.1029/2002JD002173

    Article  Google Scholar 

  • Tian L, Yao T, White JWC, Yu W, Wang N (2005) Westerly moisture transport to the middle of Himalayas revealed from the high deuterium excess. Chin Sci Bull 50(10):1026–1030

    Article  Google Scholar 

  • Tyagi A, Pai DS (2012) Monsoon 2011: a report (IMD Met. monograph: synoptic meteorology no. 01/2012). India Meteorological Department, National Climate Center, Pune, India

  • Unnikrishnan Warrier C, Praveen Babu M (2011) A comparative study on isotopic composition of precipitation in wet tropic and semi-arid stations across southern India. J Earth Syst Sci 120(6):1085–1094

    Article  Google Scholar 

  • Vuille M, Werner M, Bradley RS, Keimig F (2005) Stable isotopes in precipitation in the Asian monsoon region. J Geophys Res 110:D23108. doi:10.1029/2005JD006022

    Article  Google Scholar 

  • Wang B, Fan Z (1999) Choice of south Asian summer monsoon indices. Bull Am Meteorol Soc 80(4):629–638

    Article  Google Scholar 

  • Wang B, Wu R, Lau K-M (2001) Interannual variability of Asian summer monsoon: contrast between the Indian and western North Pacific-East Asian monsoons. J Clim 14:4073–4090

    Article  Google Scholar 

  • Wang B, Ding Q, Joseph PV (2009) Objective definition of the Indian summer monsoon onset. J Clim 22:3303–3316

    Article  Google Scholar 

  • Webster PJ, Magaña VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14451–14510

    Article  Google Scholar 

  • Windhorst D, Waltz T, Timbe E, Frede H-G, Breuer L (2013) Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest. Hydrol Earth Syst Sci 17:409–419

    Article  Google Scholar 

  • Wu G, Zhang Y (1998) Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Weather Rev 126(4):913–927

    Article  Google Scholar 

  • Wushiki H (1977) Deuterium content in the Himalayan precipitation at Khumbu District, observed in 1974/1975. Seppyo 39:50–56

    Google Scholar 

  • Yang Y, Gao D, Li B (1987) The preliminary results of studying water vapor pass along the downstream of Yarlung Zangbo (in Chinese). Sci China Ser B 8:893–902

    Google Scholar 

  • Yang X, Yao T, Yang W, Xu B, He Y, Qu D (2012) Isotopic signal of earlier summer monsoon onset in the Bay of Bengal. J Clim 25(7):2509–2516

    Article  Google Scholar 

  • Yao T, Thompson LG, Mosley-Thompson E, Yang Z, Zhang X, Lin P-N (1996) Climatological significance of δ18O in north Tibetan ice cores. J Geophys Res 101(D23):29531–29537

    Article  Google Scholar 

  • Yao T, Masson-Delmotte V, Gao J, Yu W, Yang X, Risi C, Sturm C, Werner M, Zhao H, He Y, Ren W, Tian L, Shi C, Hou S (2013) A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Rev Geophys 51:525–548. doi:10.1002/rog.20023

    Article  Google Scholar 

  • Yoshimura K, Oki T, Ohte N, Kanae S (2003) A quantitative analysis of short-term 18O variability with a Rayleigh-type isotope circulation model. J Geophys Res 108(D20):4647. doi:10.1029/2003JD003477

    Article  Google Scholar 

  • Yu W, Yao T, Tian L, Ma Y, Kurita N, Ichiyanagi K, Wang Y, Sun W (2007) Stable isotope variations in precipitation and moisture trajectories on the western Tibetan Plateau, China. Arct Antarct Alp Res 39(4):688–693

    Article  Google Scholar 

  • Yu W, Yao T, Tian L, Ma Y, Ichiyanagi K, Wang Y, Sun W (2008) Relationships between δ18O in precipitation and air temperature and moisture origin on a south-north transect of the Tibetan Plateau. Atmos Res 87(2):158–169

    Article  Google Scholar 

  • Yu W, Yao T, Lewis S, Tian L, Ma Y, Xu B, Qu D (2014a) Stable oxygen isotope differences between the areas to the north and south of Qinling Mountains in China reveal different moisture sources. Int J Climatol 34:1760–1772

    Article  Google Scholar 

  • Yu W, Xu B, Lai C-T, Ma Y, Tian L, Qu D, Zhu Z (2014b) Influences of relative humidity and Indian monsoon precipitation on leaf water stable isotopes from the southeastern Tibetan Plateau. Geophys Res Lett 41:7746–7753. doi:10.1002/2014GL062004

    Article  Google Scholar 

  • Yu W, Tian L, Ma Y, Xu B, Qu D (2015) Simultaneous monitoring of stable oxygen isotope composition in water vapour and precipitation over the central Tibetan Plateau. Atmos Chem Phys Discuss 15:14445–14472

    Article  Google Scholar 

  • Yuan F, Sheng Y, Yao T, Fan C, Li J, Zhao H, Lei Y (2011) Evaporative enrichment of oxygen-18 and deuterium in lake waters on the Tibetan Plateau. J Paleolimnol 46:291–307

    Article  Google Scholar 

  • Zech M, Tuthorn M, Zech R, Schlütz F, Zech W, Glaser B (2014) A 16-ka δ18O record of lacustrine sugar biomarkers from the High Himalaya reflects Indian Summer Monsoon variability. J Paleolimnol 51:241–251

    Article  Google Scholar 

  • Zhang X, Masayoshi N, Fujita K, Yao T, Han J (2001) Variation of precipitation δ18O in Langtang Valley, Himalayas. Sci China Ser D Earth Sci 44:769–778

    Article  Google Scholar 

  • Zhao H, Xu B, Yao T, Wu G, Lin S, Gao J, Wang M (2012) Deuterium excess record in a southern Tibetan ice core and its potential climatic implications. Clim Dyn 38:1791–1803

    Article  Google Scholar 

  • Zhao L, Xiao H, Zhou M, Cheng G, Wang L, Yin L, Ren J (2012) Factors controlling spatial and seasonal distributions of precipitation δ18O in China. Hydrol Process 26:143–152

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the Major Program of the National Natural Science Foundation of China (Grant No. 41190081), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB03030207) and the National Natural Science Foundation of China (Grant Nos. 91437110, 41371086, and 41125003). The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport model (http://ready.arl.noaa.gov/HYSPLIT.php) used in this publication. NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, provided NCEP reanalysis-derived data, via their website: http://www.esrl.noaa.gov/psd/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wusheng Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

382_2015_2829_MOESM1_ESM.pdf

Reports of Comparison and Z-Score: were shown in the Reports and Z-Score.PDF file. Reports on six blind samples from the TEL laboratory were measured by IHL of IAEA in 2014. The scores for TEL measurements were good. Note the measured values of samples from the TEL laboratory are labeled by D and E in the Z-Score reports. (PDF 2771 kb)

Supplementary material 2 (DOC 1568 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Yao, T., Tian, L. et al. Short-term variability in the dates of the Indian monsoon onset and retreat on the southern and northern slopes of the central Himalayas as determined by precipitation stable isotopes. Clim Dyn 47, 159–172 (2016). https://doi.org/10.1007/s00382-015-2829-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2829-1

Keywords

Navigation