Skip to main content

Advertisement

Log in

Eurasian snow cover variability and links to winter climate in the CMIP5 models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Observational studies and modeling experiments illustrate that variability in October Eurasian snow cover extent impacts boreal wintertime conditions over the Northern Hemisphere (NH) through a dynamical pathway involving the stratosphere and changes in the surface-based Arctic Oscillation (AO). In this paper, we conduct a comprehensive study of the Eurasian snow–AO relationship in twenty coupled climate models run under pre-industrial conditions from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Our analyses indicate that the coupled climate models, individually and collectively, do not capture well the observed snow–AO relationship. The models lack a robust lagged response between October Eurasian snow cover and several NH wintertime variables (e.g., vertically propagating waves and geopotential heights). Additionally, the CMIP5 models do not simulate the observed spatial distribution and statistics of boreal fall snow cover across the NH including Eurasia. However, when analyzing individual 40-year time slices of the models, there are periods of time in select models when the observed snow–AO relationship emerges. This finding suggests that internal variability may play a significant role in the observed relationship. Further analysis demonstrates that the models poorly capture the downward propagation of stratospheric anomalies into the troposphere, a key facet of NH wintertime climate variability irrespective of the influence of Eurasian snow cover. A weak downward propagation signal may be related to several factors including too few stratospheric vortex disruptions and weaker-than-observed tropospheric wave driving. The analyses presented can be used as a roadmap for model evaluations in future studies involving NH wintertime climate variability, including those considering future climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen RJ, Zender CS (2010) Effects of continental-scale snow albedo anomalies on the wintertime Arctic oscillation. J Geophys Res 115:D23105. doi:10.1029/2010JD014490

    Article  Google Scholar 

  • Allen RJ, Zender CS (2011) Forcing of the Arctic oscillation by Eurasian snow cover. J Clim 24:6528–6539

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (1999) Propagation of the Arctic oscillation from the stratosphere to the troposphere. J Geophys Res 104:30 937–30 946

    Article  Google Scholar 

  • Baldwin MP, Stephenson DB, Thompson DWJ, Dunkerton TJ, Charlton AJ, O’Neill A (2003) Stratospheric memory and extended-range weather forecasts. Science 301:636–640

    Article  Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Article  Google Scholar 

  • Brown RD (2000) Northern Hemisphere snow cover variability and change, 1915–1997. J Clim 13:2339–2355

    Article  Google Scholar 

  • Brown RD, Derkson C (2013) Is Eurasian October snow cover extent increasing? Env Res Lett 8:024006. doi:10.1088/1748-9326/8/2/024006

    Article  Google Scholar 

  • Brown RD, Robinson DA (2011) Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 5:219–229

    Article  Google Scholar 

  • Cattiaux J, Cassou C (2013) Opposite CMIP3/CMIP5 trends in the wintertime Northern Annular Mode explained by combined local sea ice and remote tropical influences. Geophys Res Lett 40, 3682–3687

  • Charlton-Perez AJ, Baldwin MP, Birner T, Black RX, Butler AH, Calvo N, Davis NA, Gerber EP, Gillett N, Hardiman S, Kim J, Krŭger K, Lee YY, Manzini E, McDaniel BA, Polvani L, Reichler T, Shaw TA, Sigmond M, Son SW, Toohey M, Wilcox L, Yoden S, Christansen B, Lott F, Shindell D, Yukimoto S, Watanabe S (2013) On the lack of stratospheric dynamical variability in the low-top versions of the CMIP5 models. J Geophys Res 118:2494–2505

    Google Scholar 

  • Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res 66:83–109

    Article  Google Scholar 

  • Cohen J (2003) Introducing sub-seasonal and temporal resolution to winter climate prediction. Geophys Res Lett 30:1018. doi:10.1029/2002GL016066

    Article  Google Scholar 

  • Cohen J, Entekabi D (1999) Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys Res Lett 26:345–348

    Article  Google Scholar 

  • Cohen J, Fletcher CG (2007) Improved skill of Northern Hemisphere winter surface temperature predictions based on land-atmosphere fall anomalies. J Clim 20:4118–4132

    Article  Google Scholar 

  • Cohen J, Jones J (2011) Tropospheric precursors and stratospheric warmings. J Clim 24:6562–6572

    Article  Google Scholar 

  • Cohen J, Barlow M, Kushner PJ, Saito K (2007) Stratosphere–troposphere coupling and links with Eurasian land surface variability. J Clim 20:5335–5343

    Article  Google Scholar 

  • Cohen J, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Env Res Lett 7:014007. doi:10.1088/1748-9326/7/1/014007

    Article  Google Scholar 

  • Cohen J, Jones J, Furtado JC, Tziperman E (2013) Warm arctic, cold continents: a common pattern related to Arctic sea ice, snow advance, and extreme winter weather. Oceanography 26:150–160

    Article  Google Scholar 

  • Cohen J, Furtado JC, Jones J, Barlow M, Whittleston D, Entekhabi D (2014) Linking Siberian snow cover to precursors of stratospheric variability. J Clim 27:5422–5432

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Derkson C, Brown R (2012) Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys Res Lett 39:L19504. doi:10.1029/2012GL053387

    Google Scholar 

  • Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J Clim 23:333–351. doi:10.1175/2009JCLI3053.1

    Article  Google Scholar 

  • Edmon HJ, Hoskins BJ, McIntyre ME (1980) Eliassen-Palm cross sections for the troposphere. J Atmos Sci 37:2600–2616

    Article  Google Scholar 

  • Eliassen A, Palm E (1961) On the transfer of energy in stationary mountain waves. Geofys Publ 22:1–23

    Google Scholar 

  • Fletcher CG, Kushner PJ, Cohen J (2007) Stratospheric control of the extratropical circulation response to surface forcing. Geophys Res Lett 34:L21802. doi:10.1029/2007GL031626

    Article  Google Scholar 

  • Fletcher CG, Hardiman SC, Kushner PJ, Cohen J (2009) The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J Clim 22:1208–1222. doi:10.1175/2008JCLI12505.1

    Article  Google Scholar 

  • Foster JL, Owe M, Rango A (1983) Snow cover and temperature relationships in North America and Eurasia. J Clim Appl Meteorol 22:460–469

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2007) Effects of the El Niño–Southern Oscillation and the quasi-biennial oscillation on polar temperatures. J Geophys Res 112:D19112. doi:10.1029/2007JD008481

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2010) Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J Clim 23:3282–3299

    Article  Google Scholar 

  • Gerber EP, Vallis GK (2007) Eddy-zonal flow interactions and the persistence of the zonal index. J Atmos Sci 64:3296–3311

    Article  Google Scholar 

  • Ghatak D, Frei A, Gong G, Stroeve J, Robinson D (2010) On the emergence of an Arctic amplification signal in terrestrial Arctic snow extent. J Geophys Res 115:D24105. doi:10.1029/2010JD014007

    Article  Google Scholar 

  • Gillett NP, Fyfe JC (2013) Annular mode changes in the CMIP5 simulations. Geophys Res Lett doi:10.1002/grl.50249

  • Gong G, Entekabi D, Cohen J (2003) Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. J Clim 16:3917–3931

    Article  Google Scholar 

  • Hardiman SC, Kushner PJ, Cohen J (2008) Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate. J Geophys Res 113:D21123. doi:10.129/2008JD010623

    Article  Google Scholar 

  • Haynes PH, Marks CJ, McIntyre ME, Shepherd TG, Shines KP (1991) On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J Atmos Sci 48:651–678

    Article  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent North Atlantic climate change. Science 292:90–92

    Article  Google Scholar 

  • Hurrell JW, Hoerling MP, Phillips AS, Xu T (2004) Twentieth century North Atlantic climate change. Part I: assessing determinism. Clim Dyn 23:371–389

    Article  Google Scholar 

  • Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2:32–36

    Article  Google Scholar 

  • Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone NJ, Gray LJ, Haigh JD (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nature Geosci 4:753–757

    Article  Google Scholar 

  • Kistler R, Collins W, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteor Soc 82:247–267

    Article  Google Scholar 

  • Kolstad EW, Charlton-Perez AJ (2011) Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Clim Dyn 37:1443–1456

    Article  Google Scholar 

  • Lorenz DJ, Hartmann DL (2003) Eddy-zonal flow feedback in the Northern Hemisphere winter. J Clim 16:1212–1227

    Article  Google Scholar 

  • Maidens A, Arribas A, Scaife AA, MacLachlan C, Peterson D, Knight J (2013) The influence of surface forcings on prediction of the North Atlantic Oscillation regime of Winter 2010/11. Mon Wea Rev 141:3801–3813

  • Orsolini YJ, Kindem IT, Kvamstø NG (2011a) On the potential impact of the stratosphere upon seasonal dynamical hindcasts of the North Atlantic Oscillation: a pilot study. Clim Dyn 36:579–588

    Article  Google Scholar 

  • Orsolini YJ, Senan R, Benestad RE, Melsom A (2011b) Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts. Clim Dyn 114:D19108. doi:10.1007/s00382-011-1169-z

    Google Scholar 

  • Overland JE, Wood KR, Wang M (2011) Warm Arctic-cold continents: climate impacts of the newly open Arctic Sea. Polar Res 30:15787. doi:10.3402/polar.v30i0.15787

    Article  Google Scholar 

  • Peings Y, Saint-Martin D, Douville H (2012) A numerical sensitivity study of the influence of Siberian snow on the Northern Annular Mode. J Clim 25:592–607

    Article  Google Scholar 

  • Peings Y, Brun E, Mauvais V, Douville H (2013) How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th century? Geophys Res Lett 40:183–188

    Article  Google Scholar 

  • Plumb RA (1985) On the three-dimensional propagation of stationary waves. J Atmos Sci 42:217–229

    Article  Google Scholar 

  • Riddle EE, Butler AH, Furtado JC, Cohen JL, Kumar A (2013) CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Clim Dyn 41:1099–1116

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A (2011) MERRA - NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648

    Article  Google Scholar 

  • Robinson DA, Dewey KF, Heim RR (1993) Global snow cover monitoring: an update. Bull Am Meteorol Soc 74:1689–1696

    Article  Google Scholar 

  • Scaife AA, Spangehl T, Fereday DR, Cubasch U, Langematz U, Akiyoshi H, Bekki S, Braesicke P, Butchart N, Chipperfield MP, Gettelman A, Hardiman SC, Michou M, Rozanov E, Shepherd TG (2012) Climate change projections and stratosphere–troposphere interaction. Clim Dyn 38:2089–2097

    Article  Google Scholar 

  • Schneider EK, Bengtsson L, Hu ZZ (2003) Forcing of Northern Hemisphere climate trends. J Atmos Sci 60:1504–1521

    Article  Google Scholar 

  • Shindell DT, Miller RL, Schmidt GA, Pandolfo L (1999) Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399:452–455

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

Download references

Acknowledgments

Work for this project was supported under three research grants. All authors received support from NOAA Grant #NA10OAR4310163. Additionally, J. C. Furtado and J. L. Cohen received support under NSF Grant #BCS-1060323 and #AGS-1303647. The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s PCMDI provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The authors also thank two anonymous reviewers for their insightful comments about the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason C. Furtado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furtado, J.C., Cohen, J.L., Butler, A.H. et al. Eurasian snow cover variability and links to winter climate in the CMIP5 models. Clim Dyn 45, 2591–2605 (2015). https://doi.org/10.1007/s00382-015-2494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2494-4

Keywords

Navigation