Skip to main content

Advertisement

Log in

Impact of aerosol radiative effects on 2000–2010 surface temperatures

Climate Dynamics Aims and scope Submit manuscript

Abstract

Aerosol radiative forcing from direct and indirect effects of aerosols is examined over the recent past (last 10–15 years) using updated sulfate aerosol emissions in two Earth System Models with very different surface temperature responses to aerosol forcing. The hypothesis is that aerosol forcing and in particular, the impact of indirect effects of aerosols on clouds (Aerosol–Cloud Interactions, or ACI), explains the recent ‘hiatus’ in global mean surface temperature increases. Sulfate aerosol emissions increase globally from 2000 to 2005, and then decrease slightly to 2010. Thus the change in anthropogenic sulfate induced net global radiative forcing is small over the period. Regionally, there are statistically significant forcings that are similar in both models, and consistent with changes in simulated emissions and aerosol optical depth. Coupled model simulations are performed to look at impacts of the forcing on recent surface temperatures. Temperature response patterns in the models are similar, and reflect the regional radiative forcing. Pattern correlations indicate significant correlations between observed decadal surface temperature changes and simulated surface temperature changes from recent sulfate aerosol forcing in an equilibrium framework. Sulfate ACI might be a contributor to the spatial patterns of recent temperature forcing, but not to the global mean ‘hiatus’ itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Albrecht BA (1989) Aerosols, cloud microphysics and fractional cloudiness. Science 245:1227–1230

    Article  Google Scholar 

  • Bitz C, Shell KM, Gent PR, Bailey D, Danabasoglu G, Armour KC, Holland MM, Kiehl JT (2012) Climate sensitivity of the Community Climate System Model version 4. J Clim 25:3053–3070. doi:10.1175/JCLI-D-11-00290.1

    Article  Google Scholar 

  • Booth BB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century north atlantic climate variability. Nature 484(7393):228–232. doi:10.1038/nature10946

    Article  Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh S, Sherwood S, Stevens B, Zhang X (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, chapter 7. Cambridge Universtiy Press, Cambridge

    Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SF, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111(D12106). doi:10.1029/2005JD006548

  • Chen X, Tung KK (2014) Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345(6199):897–903. doi:10.1126/science.1254937

    Article  Google Scholar 

  • Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q J R Meteorol Soc. doi:10.1002/qj.2297

  • Gettelman A, Liu X, Ghan SJ, Morrison H, Park S, Conley AJ, Klein S, Boyle J, Mitchell DL, Li JLF (2010) Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J Geophys Res 115(D18216). doi:10.1029/2009JD013797

  • Ghan S (2013) Technical note: estimating aerosol effects on cloud radiative forcing. Atmos Chem Phys 13(19):9971–9974

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48(RG4004). doi:10.1029/2010RG000345

  • Hartmann DL, Tank AK, Rusticucci M, Alexander L, Brinnimann S, Charabi Y, Dentener F, Dlugokencky E, Easterling D, Kaplan A, Soden B, Thorne P, Wild M, Zhai P (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, chapter 2. Cambridge Universtiy Press, Cambridge

    Google Scholar 

  • Hurrell JW, Holland M, Gent P, Ghan S, Kay JE, Kushner P, Lamarque JF, Large W, Lawrence D, Lindsay K et al (2013) The Community Earth System Model: a framework for collaborative research. Bull Am Meteorol Soc 94(9):13391360. doi:10.1175/BAMS-D-12-00121.1

    Article  Google Scholar 

  • Kaufmann RK, Kauppi H, Mann ML, Stock JH (2011) Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc Nat Acad Sci 108(29):11790–11793. doi:10.1073/pnas.1102467108

    Article  Google Scholar 

  • Klimont Z, Smith SJ, Cofala J (2013) The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Env Res Lett 8(014003). doi:10.1088/1748-9326/8/1/014003

  • Koch D, Bond T, Streets D, Bell N, van der Werf GR (2007) Global impacts of aerosols from particular source regions and sectors. J Geophys Res 112(D02205). doi:10.1029/2005JD007024

  • Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial pacific surface cooling. Nature 501(7467):403–407. doi:10.1038/nature12534

    Article  Google Scholar 

  • Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017–7039. doi:10.5194/acp-10-7017-2010

    Article  Google Scholar 

  • Lamarque JF, Emmons L, Hess P, Kinnison DE, Tilmes S, Vitt F, Heald C, Holland EA, Lauritzen P, Neu J et al (2012) CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci Model Dev 5:369–411

    Article  Google Scholar 

  • Lean JL, Rind DH (2009) How will earth’s surface temperature change in future decades? Geophys Res Lett 36(L15708). doi:10.1029/2009GL038932

  • Liu X et al (2012) Towards a minimal representation of aerosol direct and indirect effects: model description and evaluation. Geosci Model Dev 5:709–735. doi:10.5194/gmd-4-709-2012

    Article  Google Scholar 

  • Lu Z, Streets D, Zhang Q, Wang S, Carmichael G, Cheng Y, Wei C, Chin M, Diehl T, Tan Q (2010) Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos Chem Phys 10(13):6311–6331. doi:10.5194/acp-10-6311-2010

    Article  Google Scholar 

  • Menon S, Koch D, Beig G, Sahu S, Fasullo J, Orlikowski D (2010) Black carbon aerosols and the third polar ice cap. Atmos Chem Phys 10:4559–4571. doi:10.5194/acp-10-4559-2010

    Article  Google Scholar 

  • Miller RL et al (2014) CMIP5 historical simulations (1850–2012) with GISS ModelE2. J Adv Model Earth Syst 6:441–477. doi:10.1002/2013MS000266

    Article  Google Scholar 

  • Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model (CAM3), part I: description and numerical tests. J Clim 21(15):3642–3659

    Article  Google Scholar 

  • Neale RB, Chen CC, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque JF, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, Cameron-Smith P, Collins WD, Iacono MJ, Easter RC, Ghan SJ, Liu X, Rasch PJ, Taylor MA (2010) Description of the NCAR Community Atmosphere Model (CAM5.0). In: Technical report NCAR/TN-486+STR. National Center for Atmospheric Research, Boulder

  • Schmidt GA, Shindell DT, Tsigaridis K (2014a) Reconciling warming trends. Nat Geosci 7(3):158–160

    Article  Google Scholar 

  • Schmidt GA et al (2014b) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst 6:141–184. doi:10.1002/2013MS000265

    Article  Google Scholar 

  • Shell KM (2013) Consistent differences in climate feedbacks between atmosphereocean GCMs and atmospheric GCMs with slab-ocean models. J Clim 26:42644281. doi:10.1175/JCLI-D-12-00519.1

    Article  Google Scholar 

  • Shindell DT (2014) Inhomogeneous forcing and transient climate sensitivity. Nat Clim Change 4:274–277

    Article  Google Scholar 

  • Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner GK (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327(5970):1219–1223. doi:10.1126/science.1182488

    Article  Google Scholar 

  • Solomon S, Daniel JS, Neely RR, Vernier JP, Dutton EG, Thomason LW (2011) The persistently variable “background” stratospheric aerosol layer and global climate change. Science 333(6044):866–870. doi:10.1126/science.1206027

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Balmaseda M (2014) Earth’s energy imbalance. J Clim 27:3129–3144. doi:10.1175/JCLI-D-13-00294.1

    Article  Google Scholar 

  • Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34(7):1149–1152

    Article  Google Scholar 

Download references

Acknowledgments

The National Center for Atmospheric Research is sponsored by the U.S. National Science Foundation. Thanks to S. Tilmes and P. Bogenschutz for comments, and Greg Faluvegi for assistance with ModelE2 simulations. CESM Computing resources (ark:/85065/d7wd3xhc) were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation and other agencies. ModelE2 computer resources were provided by the NASA High-End Computing Program through the NASA Center for Climate Simulation at Goddard Space Flight Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gettelman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gettelman, A., Shindell, D.T. & Lamarque, J.F. Impact of aerosol radiative effects on 2000–2010 surface temperatures. Clim Dyn 45, 2165–2179 (2015). https://doi.org/10.1007/s00382-014-2464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2464-2

Keywords

Navigation