Skip to main content

Advertisement

Log in

Do regions outside the tropical Pacific influence ENSO through atmospheric teleconnections?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper aims at identifying oceanic regions outside the tropical Pacific, which may influence the El Niño Southern Oscillation (ENSO) through interannual modulation of equatorial Pacific winds. An Atmospheric General Circulation Model (AGCM) 7-members ensemble experiment forced by climatological sea surface temperature (hereafter, SST) in the tropical Pacific Ocean and observed interannually varying SST elsewhere produces ensemble-mean equatorial zonal wind stress interannual anomalies (ZWSA) over the equatorial Pacific. These ZWSA are largest during boreal winter in the western Pacific, and induce a ~0.5 °C response in the central Pacific during the following spring in a simple ocean model, that weakly but significantly correlates with the following ENSO peak amplitude. When correlated with global SST, the residual western equatorial Pacific ZWSA yield SST patterns that are reminiscent of ENSO teleconnections in the Indian, North and South Pacific, and Atlantic Oceans. We further design 20-members ensemble sensitivity experiments forced by typical SST patterns of the main climate modes for each of these regions, in order to identify regions that influence equatorial Pacific ZWSA most. In our experiments, only the Indian Ocean Basin-wide SST warming in late boreal winter produces a statistically significant ZWSA in the western equatorial Pacific, resulting in a weak but significant ~0.35 °C SST response in the central Pacific (i.e. ~35 % of the observed standard deviation) during the following spring, the season when the Bjerkness coupled feedback is particularly efficient. This paper hence agrees with previous studies, which suggest that ENSO-induced basin-wide SST signals in the Indian Ocean may contribute to the phase transition of ENSO. Our results suggest that studies exploring external influences on ENSO should adopt a global approach rather than focus on a specific region. Designing coupled model simulations would also allow investigating air–sea interactions-mediated teleconnection mechanisms, which we can’t reproduce in our forced AGCM framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P–P, Janowiak J et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  • Alexander M, Vimont D (2010) The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J Clim 2885–2901. doi:10.1175/2010JCLI3205.1

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15(16):2205–2231

    Article  Google Scholar 

  • Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño*. J Clim 18:302–319

    Article  Google Scholar 

  • Annamalai H, Kida S, Hafner J (2010) Potential impact of the tropical Indian Ocean–Indonesian Seas on El Niño characteristics. J Clim 23:3933–3952

    Article  Google Scholar 

  • Behera SK, Yamagata T (2003) Influence of the Indian Ocean Dipole on the Southern Oscillation. J Meteorol Soc Jpn 81:169–177

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific 1. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40:1605–1611. doi:10.1002/grl.50229

    Article  Google Scholar 

  • Burgers G (2005) The simplest ENSO recharge oscillator. Geophys Res Lett 32(13):L13706. doi:10.1029/2005GL022951

    Article  Google Scholar 

  • Cai W, Qiu Y (2013) An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean Dipole. J Clim 26:2880–2890

    Article  Google Scholar 

  • Cavalieri DJ, Parkinson CL, Gloersen P, Comiso JC, Zwally HJ (1999) Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J Geophys Res 104(C7):15803. doi:10.1029/1999JC900081

    Article  Google Scholar 

  • Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic ocean from thermodynamic air–sea interactions. Nature 385:516–518

    Article  Google Scholar 

  • Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic Meridional Modes of Tropical Atmosphere–ocean variability*. J Clim 17:4143–4158

    Article  Google Scholar 

  • Clarke AJ, Van Gorder S (2003) Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett 30(7):1399. doi:10.1029/2002GL016673

    Article  Google Scholar 

  • Dayan H, Vialard J, Izumo T, Lengaigne M (2013) Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Clim Dyn. doi:10.1007/s00382-013-1946-y

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Deser C, Wallace JM (2003) Understanding the persistence of sea surface temperature anomalies in midlatitudes. J Clim 16:57–72

    Article  Google Scholar 

  • Deser C, Alexander MA, Xie S-P, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci 2:115–143. doi:10.1146/annurev-marine-120408-151453

    Article  Google Scholar 

  • Ding H, Keenlyside N, Latif M (2012) Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Clim Dyn 38:1965–1972

    Article  Google Scholar 

  • Du Y, Xie S-P, Huang G, Hu K (2009) Role of air–sea interaction in the long persistence of El Niño-induced North Indian Ocean Warming*. J Clim 22:2023–2038

    Article  Google Scholar 

  • Federov AV, Brown JN (2009) Equatorial waves. In: Steele J (ed) Encyclopedia of ocean sciences, 2nd edn. Academic Press, New York, pp 3679–3695

    Google Scholar 

  • Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth’s atmosphere: a new parameterization. Beitr Phys Atm 53:35–62

    Google Scholar 

  • Frankignoul C, Hasselmann K (1977) Stochastic climate models, part ii application to sea-surface temperature anomalies and thermocline variability. Tellus 29(4):289–305. doi:10.1111/j.2153-3490.1977.tb00740.x

    Article  Google Scholar 

  • Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39:L02706. doi:10.1029/2011GL050520

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Glantz MH (2001) Currents of change: El Niño’s impact on climate and society. Cambridge University Press, Cambridge

    Google Scholar 

  • Graham NE, Barnett TP (1987) Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science (New York, NY) 238(4827):657–659. doi:10.1126/science.238.4827.657

    Article  Google Scholar 

  • Ham Y-G, Kug J-S, Park J-Y, Jin F–F (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6:112–116. doi:10.1038/ngeo1686

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the southern oscillation. Mon Weather Rev 109(4):813–829

    Article  Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3:168–172. doi:10.1038/ngeo760

    Article  Google Scholar 

  • Izumo T, Lengaigne M, Vialard J, Luo J–J, Yamagata T, Madec G (2014) Influence of Indian Ocean Dipole and Pacific recharge on following year’s El Niño: interdecadal robustness. Clim Dyn 42(1–2):291–310

    Article  Google Scholar 

  • Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere–ocean interactions in a conceptual framework. J Clim 22:550–567

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Kug J-S, Kang I-S (2006) Interactive feedback between the Indian Ocean and ENSO. J Clim 19:1784–1801

    Article  Google Scholar 

  • Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics parameterization developed for the ECHAM4 general circulation model. Clim Dyn 12:557–572

    Article  Google Scholar 

  • Losada T, Rodríguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010) Tropical response to the Atlantic equatorial mode: AGCM multimodel approach. Clim Dyn 5:45–52

    Article  Google Scholar 

  • Martin-Rey M, Polo I, Rodriguez-Fonseca B, Kucharski F (2012) Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Scientia Marina 76(S1):2012. doi:10.3989/scimar.03610.19A

    Article  Google Scholar 

  • McCreary J (1976) Eastern tropical ocean response to changing wind systems: with application to El Niño. J Phys Oceanogr 6:632–645

    Article  Google Scholar 

  • McGregor S, Holbrook NJ, Power SB (2009) The response of a stochastically forced ENSO model to observed off-equatorial wind-stress forcing. J Clim 22:2512–2525

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science (New York, NY) 314:1740–1745

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Loschnigg J (2003) Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO. J Clim 16:2138–2158

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated k-correlated model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Murtugudde R, McCreary JP, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res 105:3295–3306

    Article  Google Scholar 

  • Newman M, Compo G, Alexander MA (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J Clim 16:3853–3857

    Article  Google Scholar 

  • Niiler PP, Kraus EB (1977) One-dimensional models of the upper ocean. In: Kraus EB (ed) Modeling and prediction of the upper layers of the ocean. Pergamon Press, New York, pp 143–172

    Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479

    Article  Google Scholar 

  • Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech Memo 206, 41 pp

  • Ohba M, Ueda H (2005) Basin-wide warming in the equatorial Indian Ocean associated with El Niño. SOLA 1:89–92. doi:10.2151/sola.2005-024

    Article  Google Scholar 

  • Ohba M, Ueda H (2007) An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J Meteorol Soc Jpn 85:335–348

    Article  Google Scholar 

  • Ohba M, Watanabe M (2012) Role of the Indo-Pacific interbasin coupling in predicting asymmetric ENSO transition and duration. J Clim 25(9):3321–3335

    Article  Google Scholar 

  • Picaut J, Ioualalen M, Menkes C, Delcroix T, McPhaden MJ (1996) Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 274(5292):1486–1489. doi:10.1126/science.274.5292.1486

    Article  Google Scholar 

  • Reverdin G, Cadet D, Gutzler D (1986) Interannual displacements of convection and surface circulation over the equatorial Indian Ocean. Q J R Meteorol Soc 112:43–46

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20(22):5473–5496. doi:10.1175/2007JCLI1824.1

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Polo I, García-Serrano J et al (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705

    Article  Google Scholar 

  • Roeckner E et al (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Max Planck Institute for Meteorology Rep. 349, 127 pp

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2004) The atmospheric general circulation model ECHAM 5. PART II: sensitivity of simulated climate to horizontal and vertical resolution. MPI Report No. 354, Max Planck Institute for Meteorology, Hamburg

  • Saji NH, Goswami BN, Viayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Schulz J-P, Dümenil L, Polcher J (2001) On the land surface–atmosphere coupling and its impact in a single-column atmosphere model. J Appl Meteorol 40:642–663

    Article  Google Scholar 

  • Simmons AJ, Burridge DM, Jarraud M, Girard C, Wergen W (1989) The ECMWF medium-range prediction models development of the numerical formulations and the impact of increased resolution. Meteorol Atmos Phys 40(1–3):28–60. doi:10.1007/BF01027467

    Article  Google Scholar 

  • Spencer H (2004) Role of the atmosphere in seasonal phase locking of El Nino. Geophys Res Lett 31:L24104. doi:10.1029/2004GL021619

    Article  Google Scholar 

  • Spencer H, Slingo JM, Davey MK (2004) Seasonal predictability of ENSO teleconnections: the role of the remote ocean response. Clim Dyn 22:511–526

  • Terray P (2010) Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation. Clim Dyn 36:2171–2199

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800

    Article  Google Scholar 

  • Tompkins AM (2002) A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J Atmos Sci 59:1917–1942

    Article  Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9(6):303–319. doi:10.1007/BF00204745

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N-C, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324. doi:10.1029/97JC01444

    Article  Google Scholar 

  • Vialard J, Menkes C, Boulanger J-P, Delecluse P, Guilyardi E, McPhaden M (2001) A model study of the oceanic mechanisms affecting the equatorial SST during the 1997–98 El Niño. J Phys Oceanogr 31:1649–1675

    Article  Google Scholar 

  • Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926

    Article  Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO*. J Clim 16:2668–2675

    Article  Google Scholar 

  • Vimont DJ, Alexander M, Fontaine A (2009) Midlatitude excitation of tropical variability in the Pacific: the role of thermodynamic coupling and seasonality*. J Clim 22(3):518–534. doi:10.1175/2008JCLI2220.1

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere Winter. Mon Weather Rev 109(4):784–812

    Article  Google Scholar 

  • Wang W, McPhaden MJ (2000) The surface-layer heat balance in the equatorial Pacific Ocean. Part II: interannual variability*. J Phys Oceanogr 30(11):2989–3008

    Article  Google Scholar 

  • Watanabe M, Jin F-F (2002) Role of Indian Ocean warming in the development of the Philippine Sea anticyclone during El Nino. Geophys Res Lett 29. doi:10.1029/2001GL014318

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled oceanic–atmospheric dynamics in the Indian Ocean during 1997–98. Nature 401:356–360

    Article  Google Scholar 

  • Wentz FJ, Gentemann C, Smith D, Chelton D (2000) Satellite measurements of sea-surface temperature through clouds. Science 288:847–850

    Article  Google Scholar 

  • Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res 113:D05104. doi:10.1029/2007JD009316

    Google Scholar 

  • Xie S-P, Hu K, Hafner J et al (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • Zebiak SE (1993) Air–sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niñ-Southern Oscillation. Mon Weather Rev 115:2262–2278

    Article  Google Scholar 

  • Zhang H, Clement A, Di Nezio P (2014) The South Pacific Meridional Mode: a mechanism for ENSO-like variability. J Clim 27:769–783. doi:10.1175/JCLI-D-13-00082.1

Download references

Acknowledgments

Hugo Dayan is funded by a PhD grant of Ministère de l’Enseignement Supérieur et de la Recherche and by the Institut National des Sciences de l’Univers (INSU) LEFE program. Jérôme Vialard, Takeshi Izumo and Matthieu Lengaigne are funded by Institut de Recherche pour le Développement (IRD). Sébastien Masson is funded by the Conseil National des Astronomes et Physiciens (CNAP). GPCP data are provided by the NOAA/OAR/ESRL PSD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vialard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayan, H., Izumo, T., Vialard, J. et al. Do regions outside the tropical Pacific influence ENSO through atmospheric teleconnections?. Clim Dyn 45, 583–601 (2015). https://doi.org/10.1007/s00382-014-2254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2254-x

Keywords

Navigation