Skip to main content

Advertisement

Log in

Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Dust storms are considered natural hazards that seriously affect atmospheric conditions, ecosystems and human health. A key requirement for investigating the dust life cycle is the analysis of the meteorological (synoptic and dynamic) processes that control dust emission, uplift and transport. The present work focuses on examining the synoptic and dynamic meteorological conditions associated with dust-storms in the Sistan region, southeastern Iran during the summer season (June–September) of the years 2001–2012. The dust-storm days (total number of 356) are related to visibility records below 1 km at Zabol meteorological station, located near to the dust source. RegCM4 model simulations indicate that the intense northern Levar wind, the high surface heating and the valley-like characteristics of the region strongly affect the meteorological dynamics and the formation of a low-level jet that are strongly linked with dust exposures. The intra-annual evolution of the dust storms does not seem to be significantly associated with El-Nino Southern Oscillation, despite the fact that most of the dust-storms are related to positive values of Oceanic Nino Index. National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis suggests that the dust storms are associated with low sea-level pressure conditions over the whole south Asia, while at 700 hPa level a trough of low geopotential heights over India along with a ridge over Arabia and central Iran is the common scenario. A significant finding is that the dust storms over Sistan are found to be associated with a pronounced increase of the anticyclone over the Caspian Sea, enhancing the west-to-east pressure gradient and, therefore, the blowing of Levar. Infrared Difference Dust Index values highlight the intensity of the Sistan dust storms, while the SPRINTARS model simulates the dust loading and concentration reasonably well, since the dust storms are usually associated with peaks in model simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abish B, Mohanakumar K (2013) Absorbing aerosol variability over the Indian subcontinent and its increasing dependence on ENSO. Glob Plan Chang 106:13–19

    Article  Google Scholar 

  • Abolhasan G, Maryam N (2013) Case study: ENSO events, rainfall variability and the potential of SOI for the seasonal precipitation predictions in Iran. Am J Clim Chang 2:34–45

    Article  Google Scholar 

  • Akhlaq M, Sheltami TR, Mouftah HT (2012) A review of techniques and technologies for sand and dust storm detection. Rev Environ Sci Biotechnol. doi:10.1007/s11157-012-9282-y

    Google Scholar 

  • Alizadeh Choobari O, Zawar-Reza P, Sturman A (2012) Feedback between windblown dust and planetary boundary layer characteristics: sensitivity to boundary and surface layer parameterizations. Atmos Environ 61:294–304

    Article  Google Scholar 

  • Alizadeh Choobari O, Zawar-Reza P, Sturman A (2013) Low level jet intensification by mineral dust aerosols. Ann Geophys 31:625–632

    Article  Google Scholar 

  • Allen CJT, Washington R (2014) The low-level jet dust emission mechanism in the central Sahara: observations from Bordj-Badji Mokhtar during the June 2011 fennec intensive observation period. J Geophys Res 119:2990–3015. doi:10.1002/2013JD020594

    Article  Google Scholar 

  • Antón M, Valenzuela A, Cazorla A et al (2012) Global and diffuse shortwave irradiance during a strong desert dust episode at Granada (Spain). Atmos Res 118:232–239

    Article  Google Scholar 

  • Ashpole I, Washington R (2013) A new high-resolution central and western Saharan summertime dust source map from automated satellite dust plume tracking. J Geophys Res 118:6981–6995. doi:10.1002/jgrd.50554

    Google Scholar 

  • Awad AM, Mashat AWS (2013) Synoptic features associated with dust transition processes from North Africa to Asia. Arab J Geosci. doi:10.1007/s12517-013-0923-4

    Google Scholar 

  • Barkan J, Alpert P, Kutiel H, Kishcha P (2005) Synoptics of dust transportation days from Africa toward Italy and central Europe. J Geophys Res 110:D07208. doi:10.1029/2004JD005222

    Google Scholar 

  • Bidokhti AA, Boroumand N (2005) Study of gap winds in the Lut Plateau. Desert 13:13–30

    Google Scholar 

  • Bidokhti AA, Malekifard F, Mirrokni M (2002) A numerical model for prediction of threshold velocity of moving sand transport in deserts. Desert 8:127–136

    Google Scholar 

  • Bonnet S, Guieu C, Chiaverini J, Ras J, Stock A (2005) Effect of atmospheric nutrients on the autotrophic communities in low nutrient low chlorophyll system. Limnol Oceanogr 50(6):1810–1819

    Article  Google Scholar 

  • Bou Karam D, Flamant C, Cuesta J, Pelon J, Williams E (2010) Dust emission and transport associated with a Saharan depression: February 2007 case. J Geophys Res 115:D00H27. doi:10.1029/2009JD012390

    Google Scholar 

  • Brooks N, Legrand M (2000) Dust variability over Northern Africa and rainfall in the Sahel. In: McLaren SJ, Kniveton DR (eds) Linking climate change to land surface change. Kluwer, Dordrecht, pp 1–25

    Chapter  Google Scholar 

  • Bryant RG (2013) Recent advances in our understanding of dust source emission processes. Progr Phys Geogr 37:397–421

    Article  Google Scholar 

  • Bullard JE, Harrison SP, Baddock MC, Drake N, Gill TE, McTainsh G, Sun Y (2011) Preferential dust sources: a geomorphological classification designed for use in global dust-cycle models. J Geophys Res 116:F04034. doi:10.1029/2011JF002061

    Google Scholar 

  • Calastrini F, Guarnieri F, Becagli S, Busillo C, Chiari M, Dayan U, Lucarelli F, Nava S, Pasqui, M, Traversi R, Udisti R, Zipoli G (2012) Desert dust outbreaks over Mediterranean basin: a modeling, observational, and synoptic analysis approach. Adv Meteorol (article ID 246874). doi:10.1155/2012/246874

  • Carlson TN, Benjamin SG (1980) Radiative heating rates for Saharan dust. J Atmos Sci 37:193–213

    Article  Google Scholar 

  • Cavazos-Guerra C, Todd MC (2012) Model simulations of complex dust emissions over the Sahara during the West African monsoon onset. Adv Meteorol (article ID 351731). doi:10.1155/2012/351731

  • Chinnam N, Dey S, Tripathi SN, Sharma M (2006) Dust events in Kanpur, northern India: chemical evidence for source and implications to radiative forcing. Geophys Res Lett 33:L08803. doi:10.1029/2005GL025278

    Google Scholar 

  • Cuesta J, Marsham J, Parker DJ, Flamant C (2009) Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer. Atmos Sci Lett 10:34–42

    Article  Google Scholar 

  • Ekhtesasi MR, Gohari Z (2013) Determining area affected by dust storms in different wind speeds, using satellite images (case study: Sistan plain, Iran). Desert 17:193–202

    Google Scholar 

  • Engelbrecht JP, McDonald EV, Gillies JA, Jayanty RKM, Casuccio G, Gertler AW (2009) Characterizing mineral dusts and other aerosols from the Middle East—part 1: ambient sampling. Inhal Toxicol 21:297–326

    Article  Google Scholar 

  • Engelstaedter S, Tegen I, Washington R (2006) North African dust emissions and transport. Earth Sci Rev 79:73–100

    Article  Google Scholar 

  • Esmaili O, Tajrishy M (2006) Results of the 50 year ground-based measurements in comparison with satellite remote sensing of two prominent dust emission sources located in Iran. In: Proceedings of the SPIE, vol 6362, p 636209. doi:10.1117/12.692989

  • Frangi J-P, Druilhet A, Durand P, Ide H, Pages J-P, Tinga A (1992) Energy budget of the Sahelian surface layer. Ann Geophys 10:25–33

    Google Scholar 

  • Gillette D (1978) A wind tunnel simulation of the erosion of soil: effect of soil texture, sandblasting, wind speed and soil consolidation on dust production. Atmos Environ 12:1735–1743

    Article  Google Scholar 

  • Ginoux P, Prospero JM, Gill TE, Hsu CN, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50:RG3005. doi:10.1029/2012RG000388

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993) Development of a second generation regional climate model (RegCM2) part I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bil X, Elguindi N, Diro GT, Nair V, Diro G, Giuliani GT, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Giuliani GT, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Goto D, Takemura T, Nakajima T, Badarinath KVS (2011) Global aerosol model-derived black carbon concentration and single scattering albedo over Indian region and its comparison with ground observations. Atmos Environ 45:3277–3285

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179–204

    Article  Google Scholar 

  • Haustein K, Pérez C, Baldasano JM, Jorba O, Basart S, Miller RL, Janjic Z, Black T, Nickovic S, Todd MC, Washington R, Müller D, Tesche M, Weinzierl B, Esselborn M, Schladitz A (2012) Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-dust model—part 2: experimental campaigns in Northern Africa. Atmos Chem Phys 12:2933–2958

    Article  Google Scholar 

  • Heinold B, Knippertz P, Marsham JH, Fiedler S, Dixon NS, Schepanski K, Laurent B, Tegen I (2013) The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: estimates from convection-permitting simulations. J Geophys Res 118:4385–4400. doi:10.1002/jgrd.50402

    Google Scholar 

  • Huneeus N, Schulz M, Balkanski Y, Griesfeller J et al (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11:7781–7816

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Roy J, Dennis J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470

    Article  Google Scholar 

  • Kandler K, Schütz L, Deutcher C, Ebert M, Hofmann H, Jächel S, Jaenicke R, Knippertz P, Lieke K, Massling A, Petzold A, Schladitz A, Weinzierl B, Wiedensohler A, Zorn S, Weinbruch S (2009) Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus B 65:32–50

    Article  Google Scholar 

  • Karimi N, Moridnejad A, Golian S, Samani JMV, Karimi D, Javadi S (2013) Comparison of dust source identification techniques over land in the Middle East region using MODIS data. Can J Remote Sens 38:586–599

    Article  Google Scholar 

  • Kaskaoutis DG, Kosmopoulos PG, Nastos PT, Kambezidis HD, Sharma M, Mehdi W (2012a) Transport pathways of Sahara dust over Athens, Greece as detected by MODIS and TOMS. Geomat Nat Hazards Risk 3:35–54

    Article  Google Scholar 

  • Kaskaoutis DG, Gautam R, Singh RP, Houssos EE, Goto D, Singh S, Bartzokas A, Kosmopoulos PG, Sharma M, Hsu NC, Holben BN, Takemura T (2012b) Influence of anomalous dry conditions on aerosols over India: transport, distribution and properties. J Geophys Res 117:D09106. doi:10.1029/2011JD017314

    Google Scholar 

  • Kaskaoutis DG, Nastos PT, Kosmopoulos PG, Kambezidis HD (2012c) Characterizing the long-range transport mechanisms of different aerosol types over Athens, Greece during 2000–2005. Int J Climatol 32:1249–1270

    Article  Google Scholar 

  • Kaskaoutis DG, Rashki A, Houssos EE, Goto D, Nastos PT (2014a) Extremely high aerosol loading over Arabian Sea during June 2008: the specific role of the atmospheric dynamics and Sistan dust storms. Atmos Environ 94:374–384

    Article  Google Scholar 

  • Kaskaoutis DG, Houssos EE, Goto D, Bartzokas A, Nastos PT, Sinha PR, Kharol SK, Kosmopoulos PG, Singh RP, Takemura T (2014b) Synoptic weather conditions and aerosol episodes over Indo-Gangetic plains, India. Clim Dyn. doi:10.1007/s00382-014-2055-2

    Google Scholar 

  • Khoshakhlagh F, Najafi MS, Samadi M (2012) An analysis on synoptic patterns of springtime dust occurrence in West of Iran. Geogr Res Q 2(80):99–124

    Google Scholar 

  • Khoshhal Dastjerdi J, Mousavi SH, Kashki A (2012) Synoptic analysis of Ilam dust storms (1987–2005). Geogr Environ Plan 2(46):15–34

    Google Scholar 

  • Kinne S, Schulz M, Textor C, Guibert S et al (2006) An AeroCom initial assessment—optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834

    Article  Google Scholar 

  • Kutiel H, Furman H (2003) Dust storms in the Middle East: sources of origin and their temporal characteristics. Indoor Built Environ 12:419–426

    Article  Google Scholar 

  • Legrand M, N’doumé C, Jankowiak I (1994) Satellite-derived climatology of the Saharan aerosol. In: Lynch DK (eds) Passive infrared remote sensing of clouds and the atmosphere II. Proceedings of the SPIE, vol 2309, pp 127–135

  • Legrand M, Plana-Fattori A, N’doumé C (2001) Satellite detection of dust using the IR imagery of meteosat 1. Infrared difference dust index. J Geophys Res 106:18251–18274

    Article  Google Scholar 

  • Lemaître C, Flamant C, Cuesta J, Raut J-C, Chazette P, Formenti P, Pelon J (2010) Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa. Atmos Chem Phys 10:8131–8150

    Article  Google Scholar 

  • Léon JF, Legrand M (2003) Mineral dust sources in the surroundings of the north Indian Ocean. Geophys Res Lett 30(6):1309. doi:10.1029/2002GL016690

    Article  Google Scholar 

  • Maghrabi A, Alharbi B, Tapper N (2011) Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmos Environ 45:2164–2173

    Article  Google Scholar 

  • Mahowald N, Baker A, Bergametti G, Brooks N, Duce R, Jickells T, Kubilay N, Prospero J, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Glob Biogeochem Cycles 19:GB4025. doi:10.1029/2004GB002402

    Google Scholar 

  • Mahowald NM, Ballentine JA, Feddema J, Ramankutty N (2007) Global trends in visibility: implications for dust sources. Atmos Chem Phys 7:3309–3339

    Article  Google Scholar 

  • Manoj MG, Devara PCS, Safai PD, Goswami BN (2011) Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells. Clim Dyn 37:2181–2198

    Article  Google Scholar 

  • Mashhadi N, Feiznia S (2008) The study of removal (detachment) and transitional regions of wind erosion upon ground indicator (case study: Khartouran Erg). Desert 13:75–87

    Google Scholar 

  • Mathew B, Cullen H, Lyon B (2002) Drought in central and Southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J Clim 15:697–700

    Article  Google Scholar 

  • Meloni D, di Sarra A, Monteleone F, Pace G, Piacentino S, Sferlazzo DM (2008) Seasonal transport patterns of intense Saharan dust events at the Mediterranean island of Lampedusa. Atmos Res 88:134–148

    Article  Google Scholar 

  • Middleton NJ (1986) Dust storms in the Middle East. J Arid Environ 10:83–96

    Google Scholar 

  • Middleton NJ, Goudie AS (2001) Saharan dust: sources and trajectories. Trans Inst Br Geogr NS 26:165–181

    Article  Google Scholar 

  • Moosmüller H, Engelbrecht JP, Skiba M, Frey G, Chakrabarty RK, Arnott WP (2012) Single scattering albedo of fine mineral dust aerosols controlled by iron concentration. J Geophys Res 117:D11210. doi:10.1029/2011JD016909

    Article  Google Scholar 

  • Najafi MS, Khoshakhllagh F, Zamanzadeh SM, Shirazi MH, Samadi M, Hajikhani S (2013) Characteristics of TSP loads during the Middle East springtime dust storm (MESDS) in Western Iran. Arab J Geosci. doi:10.1007/s12517-013-1086-z

    Google Scholar 

  • Nair VS, Solmon F, Giorgi F, Mariotti L, Suresh Babu S, Moorthy KK (2012) Simulation of South Asian aerosols for regional climate studies. J Geophys Res 117:D04209. doi:10.1029/2011JD016711

    Google Scholar 

  • Nastos PT (2012) Meteorological patterns associated with intense Saharan dust outbreaks over Greece in winter. Adv Meteorol (article ID 828301). doi:10.1155/2012/828301

  • Nazemosadat MJ, Cordery I (2000) On the relationships between ENSO and autumn rainfall in Iran. Int J Climatol 20:47–62

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Steiner AL (2007) The ICTP RegCM3 and RegCNET: regional climate modeling for the developing world. Bull Am Meteorol Soc 88(9):1395–1409

    Article  Google Scholar 

  • Padmakumari B, Maheskumar RS, Harikishan G, Morwal SB, Prabha TV, Kulkarni JR (2013) In situ measurements of aerosol vertical and spatial distributions over continental India during the major drought year 2009. Atmos Environ 80:107–121

    Article  Google Scholar 

  • Pérez C, Nickovic S, Baldasano JM, Sicard M, Rocadenbosch F, Cachorro VE (2006) A long Saharan dust event over the western Mediterranean: lidar, sun photometer observations, and regional dust modeling. J Geophys Res 111:D15214

    Article  Google Scholar 

  • Rashki A, Kaskaoutis DG, Rautenbach CJW, Eriksson PG, Qiang M, Gupta P (2012) Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeol Res 5:51–62

    Article  Google Scholar 

  • Rashki A, Rautenbach CJW, Eriksson PG, Kaskaoutis DG, Gupta P (2013a) Temporal changes of particulate concentration in the ambient air over the city of Zahedan, Iran. Air Qual Atmos Health 6:123–135

    Article  Google Scholar 

  • Rashki A, Eriksson PG, Rautenbach CJW, Kaskaoutis DG, Grote W, Dykstra J (2013b) Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Chemosphere 90:227–236

    Article  Google Scholar 

  • Rashki A, Kaskaoutis DG, Goudie AS, Kahn RA (2013c) Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran. Sci Total Environ 463–464:552–564

    Article  Google Scholar 

  • Rashki A, Kaskaoutis DG, Rautenbach CJW, Flamant C, Abdi Vishkaee F (2014) Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations. Nat Hazards 71:563–585

    Article  Google Scholar 

  • Rezazadeh M, Irannejad P, Shao Y (2013) Climatology of the Middle East dust events. Aeol Res 10:103–109

    Article  Google Scholar 

  • Roman R, Antón M, Valenzuela A, Gil GE, Lyamani H, De Miguel A, Olmo FG, Bilbao J, Alados-Arboledas L (2013) Evaluation of the desert dust effects on global, direct and diffuse spectral ultraviolet irradiance. Tellus B 65:19578. doi:10.3402/tellusb.v65i0.19578

    Article  Google Scholar 

  • Saeed TM, Al-Dashti H, Spyrou C (2013) Aerosols optical and physical characteristics and direct radiative forcing during a “Shamal” dust storm, a case study. Atmos Chem Phys Discuss 13:23895–23941

    Article  Google Scholar 

  • Schepanski K, Tegen I, Todd MC, Heinold B, Bönisch G, Laurent B, Macke A (2009) Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of sub-daily dust source activation and numerical models. J Geophys Res 114:D10201. doi:10.1029/2008JD010325

    Article  Google Scholar 

  • Sharifikia M (2013) Environmental challenges and drought hazard assessment of Hamoun Desert Lake in Sistan region, Iran, based on the time series of satellite imagery. Nat Hazards 65:201–217

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296

    Article  Google Scholar 

  • Soltani A, Gholipoor M (2006) Teleconnections between El Nino/southern oscillation and rainfall and temperature in Iran. Int J Agric Res 1:603–608

    Article  Google Scholar 

  • Sorek-Hamer M, Cohen A, Levy RC, Ziv B, Broday DM (2013) Classification of dust days by satellite remotely sensed aerosol products. Int J Remote Sens 34:2672–2688

    Article  Google Scholar 

  • Takemura T, Okamoto H, Maruyama Y, Numaguti A, Higurashi A, Nakajima T (2000) Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J Geophys Res 105:17853–17873

    Article  Google Scholar 

  • Takemura T, Egashira M, Matsuzawa K, Ichijo H, O’ishi R, Abe-Ouchi A (2009) A simulation of the global distribution and radiative forcing of soil dust aerosols at the last glacial maximum. Atmos Chem Phys 9:3061–3073

    Article  Google Scholar 

  • Todd MC, Washington R, Raghavan S, Lizcano G, Knippertz P (2008) Regional model simulations of the Bodélé low-level jet of northern Chad during the Bodélé dust experiment (BoDEx 2005). J Clim 21:995–1012

    Article  Google Scholar 

  • United Nations Environment Programme (UNEP 2006) History of environmental change in the Sistan basin based on satellite image analysis: 1976–2005. UNEP Post-Conflict Branch, Geneva, Switzerland, p 60

  • Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate 11 data assimilation system: status update of ERA-interim. ECMWF Newsl 115:12–18. http://www.ecmwf.int/publications/newsletters/pdf/115_rev.pdf

  • Vishkaee AF, Flamant C, Cuesta J, Oolman L, Flamant P, Khalesifard HR (2012) Dust transport over Iraq and northwest Iran associated with winter Shamal: a case study. J Geophys Res 117:D03201. doi:10.1029/2011jd016339

    Google Scholar 

  • Washington R, Todd MC (2005) Atmospheric controls on mineral dust emission from the Bodélé depression, Chad: the role of the low level jet. Geophys Res Lett 32:L17701. doi:10.1029/2005GL023597

    Article  Google Scholar 

  • Washington R, Todd MC, Lizcano G, Tegen I, Flamant C, Koren I, Ginoux P, Engelstaedter S, Goudie AS, Zender CS, Bristow C, Prospero J (2006) Links between topography, wind, deflation, lakes and dust: the case of the Bodélé depression, Chad. Geophys Res Lett 33:L09401. doi:10.1029/2006GL025827

    Google Scholar 

  • WMO (2005) Climate and land degradation. World Meteorological Organization, Switzerland

    Google Scholar 

  • Zarrin A, Ghaemi H, Azadi M, Mofidi A, Mirzaei E (2011) The effect of the Zagros Mountains on the formation and maintenance of the Iran anticyclone using RegCM4. Meteorol Atmos Phys 112:91–100

    Article  Google Scholar 

  • Zoljoodi M, Didevarasl A (2013) Evaluation of spatial-temporal variability of drought events in Iran using palmer drought severity index and its principal factors (through 1951–2005). Atmos Clim Sci 3:193–207

    Google Scholar 

Download references

Acknowledgments

The NCEP/NCAR Reanalysis team is gratefully acknowledged for providing the meteorological maps, as well as the NOAA Climate Prediction Center for the Oceanic Niño Index values. We gratefully acknowledge the Eumetsat services for their providing and delivering the raw Meteosat imagery, free of charge; we thank the personnel of ICARE Thematic Center who collected and archived the raw images. The SPRINTARS calculations were performed by using National Institute for Environmental Studies (NIES) supercomputer system (NEC SX-8R/128M16). We would also like to thank many developers for MIROC AGCM and SPRINTARS and two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Kaskaoutis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaskaoutis, D.G., Rashki, A., Houssos, E.E. et al. Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran. Clim Dyn 45, 407–424 (2015). https://doi.org/10.1007/s00382-014-2208-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2208-3

Keywords

Navigation