Skip to main content

Advertisement

Log in

Sources of uncertainty in projections of twenty-first century westerly wind changes over the Amundsen Sea, West Antarctica, in CMIP5 climate models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The influence of changes in winds over the Amundsen Sea has been shown to be a potentially key mechanism in explaining rapid loss of ice from major glaciers in West Antarctica, which is having a significant impact on global sea level. Here, Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model data are used to assess twenty-first century projections in westerly winds over the Amundsen Sea (U AS ). The importance of model uncertainty and internal climate variability in RCP4.5 and RCP8.5 scenario projections are quantified and potential sources of model uncertainty are considered. For the decade 2090–2099 the CMIP5 models show an ensemble mean twenty-first century response in annual mean U AS of 0.3 and 0.7 m s−1 following the RCP4.5 and RCP8.5 scenarios respectively. However, as a consequence of large internal climate variability over the Amundsen Sea, it takes until around 2030 (2065) for the RCP8.5 response to exceed one (two) standard deviation(s) of decadal internal variability. In all scenarios and seasons the model uncertainty is large. However the present-day climatological zonal wind bias over the whole South Pacific, which is important for tropical teleconnections, is strongly related to inter-model differences in projected change in U AS (more skilful models show larger U AS increases). This relationship is significant in winter (r = −0.56) and spring (r = −0.65), when the influence of the tropics on the Amundsen Sea region is known to be important. Horizontal grid spacing and present day sea ice extent are not significant sources of inter-model spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambrizzi T, Hoskins BJ, Hsu HH (1995) Rossby wave propagation and teleconnection patterns in the austral winter. J Atmos Sci 52(21):3661–3672. doi:10.1175/1520-0469(1995)052<3661:rwpatp>2.0.co;2

    Article  Google Scholar 

  • Arakelian A, Codron F (2012) Southern hemisphere jet variability in the IPSL GCM at varying resolutions. J Atmos Sci 69(12):3788–3799. doi:10.1175/jas-d-12-0119.1

    Article  Google Scholar 

  • Arblaster JM, Meehl GA (2006) Contributions of external forcings to southern annular mode trends. J Clim 19(12):2896–2905. doi:10.1175/JCLI3774.1

    Article  Google Scholar 

  • Bracegirdle TJ (2013) Climatology and recent increase of westerly winds over the Amundsen Sea derived from six reanalyses. Int J Climatol 33(4):843–851. doi:10.1002/joc.3473

    Article  Google Scholar 

  • Bracegirdle TJ, Marshall GJ (2012) The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J Clim 25(20):7138–7146. doi:10.1175/JCLI-D-11-00685.1

    Article  Google Scholar 

  • Bracegirdle TJ, Stephenson DB (2012) Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Clim Dyn 39(12):2805–2821. doi:10.1007/s00382-012-1330-3

    Article  Google Scholar 

  • Bracegirdle TJ, Connolley WM, Turner J (2008) Antarctic climate change over the twenty first century. J Geophys Res Atmos 113(D3). doi:10.1029/2007jd008933

  • Bracegirdle TJ, Shuckburgh E, Sallee J-B, Wang Z, Meijers AJS, Bruneau N, Phillips T, Wilcox LJ (2013) Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J Geophys Res Atmos 118(2):547–562. doi:10.1002/jgrd.50153

    Article  Google Scholar 

  • Bromwich DH, Nicolas JP, Monaghan AJ (2011) An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J Clim 24(16):4189–4209. doi:10.1175/2011jcli4074.1

    Article  Google Scholar 

  • Connolley WM (1997) Variability in annual mean circulation in southern high latitudes. Clim Dyn 13:745–756

    Article  Google Scholar 

  • Dawson A, Matthews AJ, Stevens DP (2011) Rossby wave dynamics of the North Pacific extra-tropical response to El Nino: importance of the basic state in coupled GCMs. Clim Dyn 37(1–2):391–405. doi:10.1007/s00382-010-0854-7

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Fogt RL, Bromwich DH, Hines KM (2011) Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim Dyn 36(7–8):1555–1576. doi:10.1007/s00382-010-0905-0

    Article  Google Scholar 

  • Gillett NP, Fyfe JC (2013) Annular mode changes in the CMIP5 simulations. Geophys Res Lett 40(6):1189–1193. doi:10.1002/grl.50249

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107. doi:10.1175/2009bams2607.1

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Jin D, Kirtman BP (2010) How the annual cycle affects the extratropical response to ENSO. J Geophys Res Atmos 115:D06102. doi:10.1029/2009jd012660

    Google Scholar 

  • Jun M, Knutti R, Nychka DW (2008) Spatial analysis to quantify numerical model bias and dependence: how many climate models are there? J Am Stat Assoc 103(483):934–947. doi:10.1198/016214507000001265

    Article  Google Scholar 

  • Kidston J, Gerber EP (2010) Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys Res Lett 37:L09708. doi:10.1029/2010gl042873

    Google Scholar 

  • Kidston J, Taschetto AS, Thompson DWJ, England MH (2011) The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream. Geophys Res Lett 38:L15804. doi:10.1029/2011gl048056

    Article  Google Scholar 

  • Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40(6):1194–1199. doi:10.1002/grl.50256

    Article  Google Scholar 

  • Lachlan-Cope T, Connolley W (2006) Teleconnections between the tropical pacific and the amundsen-bellinghausens sea: role of the El Nino Southern Oscillation. J Geophys Res Atmos 111(D23). doi:10.1029/2005jd006386

  • L’Heureux ML, Thompson DWJ (2006) Observed relationships between the El Nino-Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19(2):276–287. doi:10.1175/jcli3617.1

    Article  Google Scholar 

  • Marshall GJ, Stott PA, Turner J, Connolley WM, King JC, Lachlan-Cope TA (2004) Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys Res Lett 31. doi:10.1029/2004GL019952

  • Marshall GJ, Orr A, van Lipzig NPM, King JC (2006) The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. J Clim 19(20):5388–5404

    Article  Google Scholar 

  • Miller RL, Schmidt GA, Shindell DT (2006) Forced annular variations in the 20th century intergovernmental panel on climate change fourth assessment report models. J. Geophys. Res. 111. doi:10.1029/2005JD006323

  • Perlwitz J, Pawson S, Fogt RL, Nielsen JE, Neff WD (2008) Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys Res Lett 35(8):L08714. doi:10.1029/2008gl033317

    Article  Google Scholar 

  • Polvani LM, Previdi M, Deser C (2011) Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys Res Lett 38:L04707. doi:10.1029/2011gl046712

    Article  Google Scholar 

  • Raisanen J (2007) How reliable are climate models? Tellus 59A:2–29. doi:10.1111/j.1600-0870.2006.00211.x

    Article  Google Scholar 

  • Schneider DP, Okumura Y, Deser C (2012) Observed Antarctic interannual climate variability and tropical linkages. J Clim 25(12):4048–4066. doi:10.1175/jcli-d-11-00273.1

    Article  Google Scholar 

  • Seager R, Harnik N, Kushnir Y, Robinson W, Miller J (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16(18):2960–2978. doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2

    Google Scholar 

  • Shepherd A, Wingham D, Rignot E (2004) Warm Ocean is eroding West Antarctic Ice Sheet. Geophys Res Lett 31(23):L23402. doi:10.1029/2004gl021106

    Article  Google Scholar 

  • Shindell T, Schmidt GA (2004) Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys Res Lett 31:L18209. doi:10.1029/2004GL020724

    Article  Google Scholar 

  • Son SW, Gerber EP, Perlwitz J, Polvani LM, Gillett NP, Seo KH, Eyring V, Shepherd TG, Waugh D, Akiyoshi H, Austin J, Baumgaertner A, Bekki S, Braesicke P, Bruhl C, Butchart N, Chipperfield MP, Cugnet D, Dameris M, Dhomse S, Frith S, Garny H, Garcia R, Hardiman SC, Jockel P, Lamarque JF, Mancini E, Marchand M, Michou M, Nakamura T, Morgenstern O, Pitari G, Plummer DA, Pyle J, Rozanov E, Scinocca JF, Shibata K, Smale D, Teyssedre H, Tian W, and Yamashita Y (2010) Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J Geophys Res Atmos 115:D00M07. doi:10.1029/2010JD014271

  • Steig EJ, Ding Q, Battisti DS, Jenkins A (2012) Tropical forcing of circumpolar deep water inflow and outlet glacier thinning in the Amundsen sea embayment, west Antarctica. Ann Glaciol 53(60):19–28

    Article  Google Scholar 

  • Swart NC, Fyfe JC (2012) Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys Res Lett 39(16):L16711. doi:10.1029/2012gl052810

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/bams-d-11-00094.1

    Article  Google Scholar 

  • Thoma M, Jenkins A, Holland D, Jacobs S (2008) Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys Res Lett 35(18). doi:10.1029/2008gl034939

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res Ocean 103(C7):14291–14324

    Article  Google Scholar 

  • Turner J (2004) The El Nino-Southern Oscillation and Antarctica. Int J Climatol 24:1–31

    Article  Google Scholar 

  • Wilcox LJ, Charlton-Perez AJ (2013) Final warming of the Southern Hemisphere polar vortex in high- and low-top CMIP5 models. J Geophys Res Atmos 118(6):2535–2546. doi:10.1002/jgrd.50254

    Article  Google Scholar 

  • Wilcox LJ, Charlton-Perez AJ, Gray LJ (2012) Trends in Austral jet position in ensembles of high- and low-top CMIP5 models. J Geophys Res Atmos 117:D13115. doi:10.1029/2012JD017597

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684

    Article  Google Scholar 

Download references

Acknowledgments

This study is part of the British Antarctic Survey Polar Science for Planet Earth Programme. It was funded by The UK Natural Environment Research Council (grant reference number NE/H02333X/1). Two anonymous reviewers are thanked for their useful and constructive comments. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The European Centre for Medium-Range Weather Forecasts are thanked for providing the ERA-Interim dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Bracegirdle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bracegirdle, T.J., Turner, J., Hosking, J.S. et al. Sources of uncertainty in projections of twenty-first century westerly wind changes over the Amundsen Sea, West Antarctica, in CMIP5 climate models. Clim Dyn 43, 2093–2104 (2014). https://doi.org/10.1007/s00382-013-2032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-2032-1

Keywords

Navigation