Skip to main content
Log in

Impact of snow initialization on sub-seasonal forecasts

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The influence of the snowpack on wintertime atmospheric teleconnections has received renewed attention in recent years, partially for its potential impact on seasonal predictability. Many observational and model studies have indicated that the autumn Eurasian snow cover in particular, influences circulation patterns over the North Pacific and North Atlantic. We have performed a suite of coupled atmosphere-ocean simulations with the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecast system to investigate the impact of accurate snow initialisation. Pairs of 2-month ensemble forecasts were started every 15 days from the 15th of October through the 1st of December in the years 2004–2009, with either realistic initialization of snow variables based on re-analyses, or else with “scrambled” snow initial conditions from an alternate autumn date and year. Initially, in the first 15 days, the presence of a thicker snowpack cools surface temperature over the continental land masses of Eurasia and North America. At a longer lead of 30-day, it causes a warming over the Arctic and the high latitudes of Eurasia due to an intensification and westward expansion of the Siberian High. It also causes a cooling over the mid-latitudes of Eurasia, and lowers sea level pressures over the Arctic. This “warm Arctic—cold continent” difference means that the forecasts of near-surface temperature with the more realistic snow initialization are in closer agreement with re-analyses, reducing a cold model bias over the Arctic and a warm model bias over mid-latitudes. The impact of realistic snow initialization upon the forecast skill in snow depth and near-surface temperature is estimated for various lead times. Following a modest skill improvement in the first 15 days over snow-covered land, we also find a forecast skill improvement up to the 30-day lead time over parts of the Arctic and the Northern Pacific, which can be attributed to the realistic snow initialization over the land masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen RJ, Zender CS (2011) Forcing of the Arctic Oscillation by Eurasian snow cover. J Clim 24:6528–6539. doi:10.1175/2011CLI4157.1

    Article  Google Scholar 

  • Balmaseda M, Vidard A, Anderson DLT (2008) The ECMWF ocean analysis system: ORA-S3. Mon Weather Rev 136(8):3018–3034

    Article  Google Scholar 

  • Benestad RE, Haugen JE (2007) On complex extremes: flood hazards and combined high spring-time precipitation and temperature in Norway. Clim Change 85:381–406. doi:10.1007/s10584-007-9263-2

    Article  Google Scholar 

  • Biancamaria S, Cazenave A, Mognard NM, Llovel W, Frappart F (2010) Satellite-based high latitude snow volume trend, variability and contribution to sea level over 1989/2006. Global Planet Change. doi:10.1016/j.gloplacha.2010.10.011

    Google Scholar 

  • Brands S, Manzanas R, Gutierrez JM, Cohen J (2012) Seasonal predictability of wintertime precipitation in Europe using the snow advance index. J Clim 25:4023–4028. doi:10.1175/JCLI-D-12-00083.1

    Article  Google Scholar 

  • Cohen J, Jones J (2011) A new index for more accurate winter predictions. Geophys Res Lett 38:L21701. doi:1.1029/2011GL049626

    Google Scholar 

  • Cohen J, Barlow M, Kushner PJ, Saito K (2007) Stratosphere-troposphere coupling and link with eurasian land-surface variability. J Clim 20:5335–5343

    Article  Google Scholar 

  • Cohen J et al (2010) Winter 2009/10: a case study of an extreme Arctic Oscillation event. Geophys Res Lett 37:L17707. doi:1.1029/2010GL044256

    Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Doblas-Reyes FJ, Weisheimer A, Deque M, Keenlyside N, McVean M, Murphy JM, Rogel P, Smith D, Palmer TN (2009) Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Quart J Roy Meteorol Soc 135(643):1538–1559

    Article  Google Scholar 

  • Douville H (2009) Relative contributions of soil and snow hydrology to seasonal climate predictability: a pilot study. Clim Dyn 34(6):797–818. doi:10.1007/s00382-008-0508-1

    Article  Google Scholar 

  • Dutra E, Balsamo G, Viterbo P, Miranda PMA, Beljaars A, Schär C, Elder K (2010) An improved snow scheme for the ECMWF land surface model: description and offline validation. J Hydrometeorol 11:899–916. doi:10.1175/2010JHM1249.1

    Article  Google Scholar 

  • Dutra E, Schär C, Viterbo P, Miranda PMA (2011) Land-atmosphere coupling associated with snow cover. Geophys Res Lett 38:L15707. doi:1.1029/2011GL048435

    Article  Google Scholar 

  • Dutra E, Viterbo P, Miranda PMA, Balsamo G (2012) Complexity of snow schemes in a climate model and its impacts on surface energy and hydrology. J Hydrometeorol 13:521–538

    Article  Google Scholar 

  • Fletcher CG, Kushner PJ, Cohen J (2007) Stratospheric control of the extratropical circulation response to surface forcing. Geophys Res Lett 34:L21802. doi:1.1029/2007GL031626

    Article  Google Scholar 

  • Fletcher CG, Hardiman SC, Kushner PJ (2009) The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J Clim 22(5):1208–1222. doi:10.1175/2008CLI2505

    Article  Google Scholar 

  • Gong G, Entekhabi D, Cohen J (2002) A large-ensemble model study of the wintertime AO-NAO and the role of interannual snow perturbations. J Clim 16:3917–3931

    Article  Google Scholar 

  • Guo Z et al (2006) GLACE: the global land-atmosphere coupling experiment. PART II: analysis. J Hydrometeorol 7:611–625

    Article  Google Scholar 

  • Hardiman S, Kushner PJ, Cohen J (2008) Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate. J Geophys Res 113:D21123. doi:10.1029/2008JD010623

    Article  Google Scholar 

  • Hori M, Inoue J, Kikuchi T, Honda M, Tachibana Y (2011) Recurrence of intraseasonal cold air outbreak during the 2009/2010 winter in Japan and its ties to the atmospheric condition over the Barents-Kara sea. SOLA 7:025–028. doi:10.2151/sola.2011-007

    Article  Google Scholar 

  • Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone N, Gray L, Haigh J (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4:753–757. doi:10.1038/NGEO1282

    Google Scholar 

  • Jeong JH, Ou T, Linderholm H, Kim BM, Kim SJ, Kug JS, Chen D (2011) Recent recovery of the Siberian High intensity. J Geophys Res 116:D23102. doi:10.1029/2011JD015904

    Article  Google Scholar 

  • Kirtman B, Pirani A (2009) The state of the art of seasonal prediction: outcomes and recommendations from the first world climate research program workshop on seasonal prediction. Bull Am Meteorol Soc 90(4):455–458

    Article  Google Scholar 

  • Koster RD et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138. doi:10.1126/science.1100217

    Article  Google Scholar 

  • Koster RD et al (2006) GLACE: the global land-atmosphere coupling experiment. PART I: overview. J Hydrometeorol 7:590–610

    Article  Google Scholar 

  • Koster RD et al (2010) Contribution of land surface initialization to subseasonal forecast skill: first results from a multi-model experiment. Geophys Res Lett 37:L02402. doi:10.1029/2009GL041677

    Article  Google Scholar 

  • Koster RD et al (2011) GLACE2: the second phase of the global land-atmosphere coupling experiment: soil moisture contributrion to subseasonal forecast skill. J Hydrometeorol 12:805–822. doi:10.1175/2011JHM1365.1

    Article  Google Scholar 

  • Orsolini YJ, Kvamstø N (2009) The role of the Eurasian snow cover upon the wintertime circulation: decadal simulations forced with satellite observations. J Geophys Res 114:D19108. doi:10.1029/2009JD012253

    Article  Google Scholar 

  • Orsolini YJ, Senan R, Benestad R, Melsom A (2012) Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean-atmosphere hindcasts. Clim Dyn 38:2437–2448. doi:10.1007/s00382-011-1169-z

    Article  Google Scholar 

  • Overland JE, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus Ser A 62:1–9. doi:10.1111/j.1600-0870.2009.00421.x

    Article  Google Scholar 

  • Palmer TN (1996) Predictability of the atmosphere and oceans: from days to decades, in decadal climate variability. In: Anderson DLT, Willebrand J (eds) NATO ASI Series 1: global environmental change, vol 44. Springer, Berlin, pp 83–156

    Google Scholar 

  • Peings Y, Saint-Martin D, Douville H (2012) A numerical sensitivity study of the influence of Siberian snow on the northern annular mode. J Clim 25:592–607. doi:10.1175/JCLI-D-11-00038.1

    Article  Google Scholar 

  • Saito K, Cohen J, Entekhabi D (2001) Evolution of atmospheric response to early-season Eurasian snow cover anomalies. Mon Weather Rev 129:2746–2760

    Article  Google Scholar 

  • Shongwe ME, Ferro CAT, Coelho CAS, Van Oldenborgh GJ (2007) Predictability of cold spring seasons in Europe. Mon Weather Rev 135:4185–4201

    Article  Google Scholar 

  • Smith KL, Kushner PJ, Cohen J (2011) The role of linear interference in Northern Annular Mode variability associated with Eurasian snow cover extent. J Clim 24:6185–6202

    Article  Google Scholar 

  • Takaya K, Nakamura H (2005) Mechanisms of intraseasonal amplification of the cold Siberian High. J Atmos Sci 62:4423–4440

    Article  Google Scholar 

  • van den Hurk B, Doblas-Reyes F, Balsamo G, Koster RD, Seneviratne SI, Camargo H (2012) Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Clim Dyn 38:349–362. doi:10.1007/s00382-010-0956-2

    Google Scholar 

  • van Oldenborgh GJ, Balmaseda MA, Ferranti L, Stockdale TN, Anderson DLT (2005) Evaluation of atmospheric fields from the ECMWF seasonal forecasts over a 15-year period. J Clim 18(16):3250–3269

    Article  Google Scholar 

  • Vavrus S (2007) The role of terrestrial snow cover in the climate system. Clim Dyn 29:73–88

    Article  Google Scholar 

  • Walsh JE, Ross B (1988) Sensitivity of 30-day dynamical forecasts to continental snow cover. J Clim 1:739–754

    Article  Google Scholar 

  • Wu Q, Hu H, Zhang L (2011) Observed influences of autumn-early winter Eurasian snow cover anomalies on the hemispheric PNA-like variability in winter. J Clim 24:2017–2023. doi:10.1175/2011JCLI4236.1

    Article  Google Scholar 

  • Xu L, Dirmeyer P (2011) Snow-atmosphere coupling strength in a global circulation model. Geophys Res Lett 38:L13401. doi:10.1029/2011GL048049

    Google Scholar 

  • Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007. doi:10.1088/1748-9326/7/1/014007

Download references

Acknowledgments

This study was funded by the Norwegian Research Council (SPAR project, grant #178570). Computing time was provided by the national special project SPNOSPAR at ECMWF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Orsolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orsolini, Y.J., Senan, R., Balsamo, G. et al. Impact of snow initialization on sub-seasonal forecasts. Clim Dyn 41, 1969–1982 (2013). https://doi.org/10.1007/s00382-013-1782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1782-0

Keywords

Navigation