Skip to main content

Advertisement

Log in

The simulated atmospheric response to expansion of the Arctic boreal forest biome

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Over the last century, the Arctic has warmed at twice the rate of the planet as a whole. Observational evidence indicates that this rapid warming is affecting the tundra and boreal forest biomes by changing their structure and geographic distribution. A global climate model (GCM) was used to explore the atmospheric response to boreal forest expansion by applying a one-grid cell shift of the forest into tundra. This subtle shift is meant to represent the expansion that would occur this century rather than more extreme scenarios predicted by dynamic vegetation models. Results show that this shift causes an average annual warming of 0.3 °C over the region because of a reduction in the surface albedo and an increase in net radiation. A warming of ~1.0 °C occurs in spring when the forest masks the higher albedo snow-covered surface and results in snowmelt and a reduction in cloud cover. Results fail to show a larger-scale dynamical response although some warming of the lower and mid troposphere occurs in July. No changes were found in the position or strength of the Arctic frontal zone as some studies have indicated will occur with a shift in the boreal forest-tundra boundary. These findings suggest that coupled model simulations that predict larger changes in vegetation distribution are likely overemphasizing the amount of Arctic warming that will occur this century. These findings also indicate that a realistic dynamical response to subtle land cover change might not be correctly simulated by GCMs run at coarse spatial resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ACIA (2004) Impact of a warming arctic: arctic climate impact assessment. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Beringer J, Tapper NJ, McHugh I, Chapin FS III, Lynch AH, Serreze MC, Slater AG (2001) Impact of Arctic treeline on synoptic climate. Geophys Res Lett 28(22):4247–4250

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449. doi:10.1126/science.1155121

    Article  Google Scholar 

  • Bonan GB, Levis S (2006) Evaluating aspects of the community land and atmosphere models (CLM3 and CAM3) using a dynamical global vegetation model. J Clim 19(11):2290–2301

    Article  Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359(6397):716–718

    Article  Google Scholar 

  • Bonan GB, Chapin FSI, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Climatic Change 29:145–167

    Article  Google Scholar 

  • Bryson RA (1966) Air masses, streamlines, and the boreal forest. Geogr Bull 8(3):228–269

    Google Scholar 

  • Cai M, Kalnay E, Toth Z (2003) Bred vectors of the Zebiak-Cane model and their potential application to ENSO predictions. J Clim 16:40–56

    Article  Google Scholar 

  • Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping C-L, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in Arctic summer warming. Science 310(5748):657–660. doi:10.1126/science.1117368

    Article  Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Briegleb BP (2006) The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J Clim 19(11):2144–2161

    Article  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292(5517):673–679. doi:10.1126/science.292.5517.673

    Article  Google Scholar 

  • Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biol 12(4):731–750. doi:10.1111/j.1365-2486.2006.01113.x

    Article  Google Scholar 

  • Fischlin A, Midgley GF, Price J, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube P, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods and services. In: Parry ML, Canziani OF, Palutikof JP, Linden PJvd, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 211–272

  • Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371:52–54

    Article  Google Scholar 

  • Gamache I, Payette S (2005) Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J Biogeogr 32(5):849–862. doi:10.1111/j.1365-2699.2004.01182.x

    Article  Google Scholar 

  • Hare FK, Ritchie JC (1972) The boreal bioclimates. Geogr Rev 62(3):333–365

    Article  Google Scholar 

  • Higgins PAT, Harte J (2006) Biophysical and biogeochemical responses to climate change depend on dispersal and migration. Bioscience 56(5):407–417. doi:10.1641/0006-3568(2006)056[0407:BABRTC]2.0.Co;2

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 104

    Google Scholar 

  • Jeong S-J, Ho C-H, Park T-W, Kim J, Levis S (2011) Impact of vegetation feedback on the temperature and its diurnal range over the Northern Hemisphere during summer in a 2 × CO2 climate. Clim Dyn 37(3):821–833. doi:10.1007/s00382-010-0827-x

    Article  Google Scholar 

  • Jia G, Epstein HE, Walker DA (2003) Greening of arctic Alaska, 1981–2001. Geophys Res Lett 30(20):1029–1033. doi:10.1029/2003GL018268

    Article  Google Scholar 

  • Krebs JS, Barry RG (1970) The Arctic Front and the Tundra-Taiga Boundary in Eurasia. Geogr Rev 60(4):548–554

    Article  Google Scholar 

  • Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987–990. doi:10.1038/Nature06777

    Article  Google Scholar 

  • Lee X, Goulden ML, Hollinger DY, Barr A, Black TA, Bohrer G, Bracho R, Drake B, Goldstein A, Gu LH, Katul G, Kolb T, Law BE, Margolis H, Meyers T, Monson R, Munger W, Oren R, Kyaw TPU, Richardson AD, Schmid HP, Staebler R, Wofsy S, Zhao L (2011) Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479(7373):384–387. doi:10.1038/Nature10588

    Article  Google Scholar 

  • Levis S, Foley JA, Brovkin V, Pollard D (1999a) On the stability of the high-latitude climate-vegetation system in a coupled atmosphere-biosphere model. Glob Ecol Biogeogr 8:489–500

    Article  Google Scholar 

  • Levis S, Foley JA, Pollard D (1999b) Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys Res Lett 26(6):747–750

    Article  Google Scholar 

  • Levis S, Foley JA, Pollard D (2000) Large-scale vegetation feedbacks on a doubled CO2 Climate. J Clim 13:1313–1325

    Article  Google Scholar 

  • Liess S, Snyder PK, Harding KJ (2012) The effects of boreal forest expansion on the summer Arctic frontal zone. Clim Dyn 38:1805–1827. doi:10.1007/s00382-011-1064-7

    Article  Google Scholar 

  • Lloyd AH (2005) Ecological histories from Alaskan tree lines provide insight into future change. Ecology 86(7):1687–1695

    Article  Google Scholar 

  • Lynch A, Slater A, Serreze M (2001) The Alaskan Arctic frontal zone: forcing by orography, coastal contrast, and the boreal forest. J Clim 14(23):4351–4362

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  Google Scholar 

  • Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M, Finney B, Gajewski K, Jacoby G, Jennings A, Lamoureux S, Lasca A, MacDonald G, Moore J, Retelle M, Smith S, Wolfe A, Zielinski G (1997) Arctic environmental change of the last four centuries. Science 278(5341):1251–1256

    Article  Google Scholar 

  • Pielke RA, Vidale PL (1995) The boreal forest and the polar front. J Geophys Res 100(D12):25755–25758

    Google Scholar 

  • Reed RJ, Kunkel BA (1960) The Arctic circulation in summer. J Meteorol 17:489–506

    Article  Google Scholar 

  • Sellers P, Hall F, Margolis H, Kelly B, Baldocchi D, Denhartog G, Cihlar J, Ryan MG, Goodison B, Crill P, Ranson KJ, Lettenmaier D, Wickland DE (1995) The boreal ecosystem-atmosphere study (Boreas)—an overview and early results from the 1994 field year. Bull Am Meteorol Soc 76(9):1549–1577

    Article  Google Scholar 

  • Serreze MC, Barry RG (2005) The arctic climate system. Atmospheric and space sciences series. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Serreze M, Lynch A, Clark M (2001) The Arctic frontal zone as seen in the NCEP-NCAR reanalysis. J Clim 14(7):1550–1567

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3 (trans: division MaMM). NCAR technical note, vol 475. National Center for Atmospheric Research, Boulder, CO, USA

  • Snyder PK, Delire C, Foley JA (2004) Evaluating the influence of different vegetation biomes on the global climate. Clim Dyn 23(3–4):279–302. doi:10.1007/S00382-004-0430-0

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology, 1st edn. Kluwer Academic Publishers, Berlin

  • Swann AL, Fung IY, Levis S, Bonan GB, Doney SC (2010) Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc Natl Acad Sci USA 107(4):1295–1300. doi:10.1073/Pnas.0913846107

    Article  Google Scholar 

  • Thomas G, Rowntree PR (1992) The Boreal forests and climate. Q J R Meteorol Soc 118:469–497

    Article  Google Scholar 

  • Toth Z, Kalnay E (1993) Ensemble forecasting at NMC: the generation of perturbations. Bull Am Meteor Soc 74:2317–2330

    Article  Google Scholar 

  • Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45(4):184–190. doi:10.1007/s00484-001-0109-8

    Article  Google Scholar 

  • Vavrus S, Waliser D (2008) An improved parametrization for simulating arctic cloud amount in the CCSM3 climate model. J Clim 21(21):5673–5687. doi:10.1175/2008jcli2299.1

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, vol 91. International geophysics series, 3 edn. Academic Press, New York

  • Zhou LM, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106(D17):20069–20083

    Google Scholar 

Download references

Acknowledgments

This study and the material herein are based upon work supported by the U.S. National Science Foundation under grant No. ATM-0840048 and the University of Minnesota’s Initiative for Renewable Energy and the Environment grant No. RC-0010-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Snyder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, P.K., Liess, S. The simulated atmospheric response to expansion of the Arctic boreal forest biome. Clim Dyn 42, 487–503 (2014). https://doi.org/10.1007/s00382-013-1746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1746-4

Keywords

Navigation