Skip to main content

Advertisement

Log in

Mediterranean warm-core cyclones in a warmer world

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Regional climate model projections over the Mediterranean region are analysed for the presence of intense, warm-core lows that share some of the characteristics of tropical cyclones. The results indicate that the number of such systems decreases in a warmer world, particularly in winter. Comparison of the simulated numbers to changes in relevant climate diagnostics suggests that numbers decrease due to an increasingly hostile environment for storm formation, combined with a general poleward shift in the incidence of wintertime lows over western Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bister M, Emanuel K (1998) Dissipative heating and hurricane intensity. Meteorol Atmos Phys 50:233–240

    Article  Google Scholar 

  • Briegel LM, Frank WM (1997) Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon Weather Rev 125:1397–1413

    Article  Google Scholar 

  • Campins J, Genoves A, Picornell MA, Jansa A (2010) Climatology of Mediterranean cyclones using the ERA-40 dataset. Int J Climatol 31:1596–1614

    Google Scholar 

  • Cavicchia L, von Storch H (2012) The simulation of medicanes in a high-resolution regional climate model. Clim Dyn 39:2273–2290

    Article  Google Scholar 

  • Christensen J, Carter T, Giorgi F (2002) PRUDENCE employs new methods to assess European climate change. EOS 83:147

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere–atmosphere transfer scheme (BATS) version 1E as coupled to the NCAR community climate model. NCAR Tech Rep. TN-387+STR, p 72

  • Eady ET (1949) Long waves and cyclone waves. Tellus 1:33–52

    Article  Google Scholar 

  • Efimov VV, Stanichnyi SV, Shokurov MV, Yarovaya DA (2008) Observations of a quasi-tropical cyclone over the Black Sea. Russ Meteorol Hydrol 33:233–239

    Article  Google Scholar 

  • Emanuel K (2005) Genesis and maintenance of Mediterranean hurricanes. Adv Geosci 2:217–220

    Article  Google Scholar 

  • Fita L, Romero R, Luque A, Emanuel K, Ramis C (2007) Analysis of the environments of seven Mediterranean storms using an axisymmetric, nonhydrostatic cloud model. Nat Hazards Earth Syst Sci 7:41–56

    Article  Google Scholar 

  • Flocas HA, Simmonds I, Kouroutzoglou J, Keay K, Hatzaki M, Bricolas V, Demosthenes A (2010) On cyclonic tracks over the eastern Mediterranean. J Clim 23:5243–5257

    Article  Google Scholar 

  • Gaertner MA, Jacob D, Gil V, Domınguez M, Padorno E, Sanchez E, Castro M (2007) Tropical cyclones over the Mediterranean Sea in climate change simulations. Geophys Res Lett 34. doi:10.1029/2007GL029977

  • Gaertner MA, Gil V, Romera R, Domínguez M, Sánchez E, Gallardo C (2011) Climate change scenarios and risk of tropical cyclones over the Mediterranean Sea: analysis with ENSEMBLES data. Presented at the 3rd International Summit on Hurricanes and Climate Change, June 27–July 2, 2011, Rhodes

  • Giorgi F, Coppola E (2007) European climate-change oscillation (ECO). Geophys Res Lett 34:L21703

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (REGCM2). Part I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT, DeCanio G (1993b) Development of a second generation regional climate model (REGCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Hart R (2003) A cyclone phase space derived from thermal wind and thermal asymmetry. Mon Weather Rev 131:585–616

    Article  Google Scholar 

  • Haurwitz B (1935) The height of tropical cyclones and the eye of the storm. Mon Weather Rev 63:45–49

    Article  Google Scholar 

  • Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts. EOS 85:566

    Article  Google Scholar 

  • Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR community climate model (CCM3).NCAR Tech Rep. TN-420+STR, p 152

  • Kistler K, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Lagouvardos K, Kotroni V, Nickovic S, Jovic D, Kallos G, Tremback CJ (1999) Observations and model simulations of a winter sub-synoptic vortex over the central Mediterranean. Meteorol Appl 6:371–383

    Article  Google Scholar 

  • Landman WA, Seth A, Camargo SJ (2005) The effect of regional climate model domain choice on the simulation of tropical cyclone-like vortices in the southwestern Indian Ocean. J Clim 18:1263–1274

    Article  Google Scholar 

  • Lavaysse C, Flamant C, Janicot S, Knippertz P (2010) Links between African easterly waves, midlatitude circulation and intraseasonal pulsations of the West African heat low. Q J R Meteorol Soc 136:141–158

    Article  Google Scholar 

  • Lionello P, Boldrin U, Giorgi F (2008) Future changes in cyclone climatology over Europe as inferred from a regional climate simulation. Clim Dyn 30:657–671

    Article  Google Scholar 

  • Maheras P, Flocas HA, Patrikas I, Anagnostopoulou C (2001) A 40-year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. Int J Climatol 21:109–130

    Article  Google Scholar 

  • Mayengon R (1984) Warm core cyclones in the Mediterranean. Mar Wea Log 28:6–9

    Google Scholar 

  • Murray RJ, Simmonds I (1991a) A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the scheme. Aust Meteor Mag 39:155–166

    Google Scholar 

  • Murray RJ, Simmonds I (1991b) A numerical scheme for tracking cyclone centres from digital data. Part II: application to January and July general circulation model simulations. Aust Meteor Mag 39:167–180

    Google Scholar 

  • Nakicenovic N, Swart R (2000) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge 570 p

    Google Scholar 

  • Paciorek CJ, Risbey JS, Ventura V, Rosen RD (2002) Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J Clim 15:1573–1590

    Article  Google Scholar 

  • Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional scale water and energy budgets: influence of a new moist physics scheme within RegCM. J Geophys Res 105:29579–29594

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JS, Diffenbaugh NS, Karmacharya J, Konare A, Martinez D, Da Rocha RP, Sloan LC, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409

    Article  Google Scholar 

  • Pezza AB, Simmonds I (2005) The first South Atlantic hurricane: unprecedented blocking, low shear and climate change. Geophys Res Lett 32:L15712. doi:10.1029/2005GL023390

    Article  Google Scholar 

  • Picornell MA, Jansa J, Genove A, Campins J (2001) Automated database of mesocyclones from the HIRLAM-0.5 analyses in the western Mediterranean. Int J Climatol 21:335–354

    Article  Google Scholar 

  • Pytharoulis I, Craig GC, Ballard SP (2000) The hurricane-like Mediterranean cyclone of January 1995. Meteorol Appl 7:261–279

    Article  Google Scholar 

  • Reale O, Atlas R (2001) Tropical cyclone-like vortices in the extratropics: observational evidence and synoptic analysis. Wea Forecast 16:7–34

    Article  Google Scholar 

  • Roeckner E, Bauml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Rep. No. 349, Max-Planck-Institut für Meteorologie, Hamburg, Germany, p 127

  • Schepanski K, Knippertz P (2011) Soudano–Saharan depressions and their importance for precipitation and dust: a new perspective on a classical synoptic concept. Q J R Meteorol Soc 137:1431–1445

    Article  Google Scholar 

  • Shapiro LJ (1987) Month-to-month variability of Atlantic tropical circulation and its relationship to tropical cyclone formation. Mon Weather Rev 115:2598–2614

    Article  Google Scholar 

  • Shapiro MA, Keyser D (1990) Fronts, jet streams and the tropopause. In: Newton CW, Holopainen EO (eds) Extratropical cyclones, the Erik Palmen memorial volume. American Meteorological Society, Boston, pp 167–191

    Google Scholar 

  • Simmonds I, Lim E-P (2009) Biases in the calculation of Southern Hemisphere mean baroclinic eddy growth rate. Geophys Res Lett 36:L01707. doi:10.1029/2008GL036320

    Google Scholar 

  • Tous M, Romero R (2011) Medicanes: criteris de catalogació i exploració dels ambient meteorològics. Tethys 8:53–61

    Google Scholar 

  • Tous M, Romero R (2013) Meteorological environments associated with medicane development. Int J Climatol 33:1–14

    Article  Google Scholar 

  • Tous M, Romero R, Ramis C (2010) Medicanes: database and environmental parameters. EGU Abstracts 2010, vol 12, EGU2010-12620

  • Ulbrich U, Christoph M (1999) A shift in the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas. Clim Dyn 15:551–559

    Article  Google Scholar 

  • Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vallis GK (2006) Atmospheric and oceanic dynamics: fundamentals and large-scale circulation. Cambridge University Press, New York 744 p

    Book  Google Scholar 

  • Walsh KJE, Nguyen K-C, McGregor JL (2004) Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Clim Dyn 22:47–56

    Article  Google Scholar 

  • Ziv B, Dayan U, Sharon D (2005) A mid-winter, tropical extreme flood-producing storm in southern Israel: synoptic scale analysis. Meteorol Atmos Phys 88:53–63

    Article  Google Scholar 

Download references

Acknowledgments

The first author would like to thank the University of Melbourne and ICTP, which both provided partial funding for his visit to ICTP in October–December 2010. The authors would also like to thank the Commonwealth Scientific and Industrial Research Organisation (CSIRO) for the use of their tropical cyclone tracking scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, K., Giorgi, F. & Coppola, E. Mediterranean warm-core cyclones in a warmer world. Clim Dyn 42, 1053–1066 (2014). https://doi.org/10.1007/s00382-013-1723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1723-y

Keywords

Navigation