Climate Dynamics

, Volume 40, Issue 1, pp 81–94

The impact of climate change on the Niger River Basin hydroclimatology, West Africa

Article

DOI: 10.1007/s00382-012-1498-6

Cite this article as:
Oguntunde, P.G. & Abiodun, B.J. Clim Dyn (2013) 40: 81. doi:10.1007/s00382-012-1498-6

Abstract

Climate change has the potential to reduce water availability in West Africa. This study aims to quantify the expected impact of increased greenhouse gases (GHGs) on hydroclimatology of Niger River Basin (NRB). Boundary data from a general circulation model are used to force a regional climate model, to produce dynamically downscaled hydroclimatic variables of NRB under present-day (PRS) and future climate scenarios. The data were further analyzed to detect changes in atmospheric and surface water balance components and moisture recycling ratio (β). The results show that elevated GHGs (under A1B scenario) would produce a drier climate during the rainy season and a wetter climate during the dry season. A warmer climate over NRB in all months was projected. Highest temperature increase of 3 °C occurs about 14°N in May and June, and the smallest increase of 0.5 °C occurs below 8°N in wet-dry transition period. Evaporation reduces during wet season and increases during the dry periods. Humidity increases by 2 % in the dry season, but decreases by 2–4 % in the wet season. Maximum change in moisture influx of 20.7 % and outflux of 20.6 % occur in June and July, respectively. β is projected to decrease in 75 % of the months with biggest relative change of −18.4 % in June. The projected decrease in precipitation efficiency (ρ) during the wet season reaches −20.3 % in June. For PRS run, about 66 % of the available atmospheric moisture in NRB precipitates between June and September, of which around 21 % originates from local evaporation. The result suggests that under enhanced GHGs, local evaporation will contribute less to atmospheric moisture and precipitation over the basin. Projected changes in rainfall and streamflow for Upper Niger and Benue sub-basin are significantly different during the wet season.

Keywords

Climate changeNiger River BasinHydroclimatologyWater balanceMoisture recycling ratios

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute of Landscape HydrologyLeibniz Center for Agricultural Landscape Research (ZALF)MünchebergGermany
  2. 2.Department of Environmental and Geographical ScienceUniversity of Cape TownCape TownSouth Africa
  3. 3.Soil, Water and Environment Section, Department of Agricultural EngineeringThe Federal University of TechnologyAkureNigeria