Skip to main content

Advertisement

Log in

A possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on TRMM and MERRA reanalysis

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Boreal summer intraseasonal oscillations (BSISOs) manifest in the active and break spells and act as the primary building block of the Indian summer monsoon. Although recent research has evolved a basic framework for understanding the scale selection and northward propagation of the BSISO, the role of different hydrometeors in modulating these processes remains poorly explored. In this study, TRMM-2A12 retrievals and Modern Era Retrospective-analysis for Research and Applications reanalysis data are examined to establish relationship between cloud hydrometeors and other atmospheric dynamical parameters with the northward propagation of the BSISOs. The study reveals that the cloud liquid water leads the deep convection during the northward propagation of BSISOs in the lower troposphere, while the cloud ice slightly lags the convection. This distribution indicates the occurrence of a possible mechanism of the lower level moistening through the large scale moisture advection in lower atmosphere and boundary layer (PBL) convergence, followed by triggering of the deep convection. The analyses of moisture advection and the dynamical fields with respect to the convection center show that low level moistening is a manifestation of the barotropic vorticity and PBL convergence of moisture anomaly north of the convection center. A new internal dynamical-thermodynamical mechanism is unraveled to understand the reason behind the middle tropospheric heating maximum and its role on the northward propagation. It is shown that the enhanced moisture perturbation in lower levels together with the heat transport by the sub-grid scale eddies within the PBL induces lower level instability required to precondition the lower atmosphere for triggering the deep convection. Vigorous upward motion inside the deep convection uplifts the liquid hydrometeors to upper levels and the formation of precipitable ice leads to the heating maxima in the middle troposphere. To check the robustness of the proposed hypothesis, similar analysis is performed for the weak northward propagating BSISO cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bosilovich MG et al (2006) NASA’s modern era retrospective-Analysis for research and applications. U S CLIVAR variations, 4. U S CLIVAR Office, Washington, DC, pp 5–8

    Google Scholar 

  • Cadet DL (1986) Fluctuations of precipitable water over the Indian Ocean during the 1979 summer monsoon. Tellus Ser A Dyn Meteorol Oceanogr 38:170–177

    Article  Google Scholar 

  • Chattopadhyay R, Sahai AK, Goswami BN (2008) Objective identification of nonlinear convectively coupled phases of monsoon intraseasonal oscillation: implications for prediction. J Atmos Sci 65:1549–1569

    Article  Google Scholar 

  • Chattopadhyay R, Goswami BN, Sahai AK, Fraedrich K (2009) Role of stratiform rainfall in modifying the northward propagation of monsoon intra-seasonal oscillation. J Geophys Res 114:D19114. doi:10.1029/2009JD011869

    Article  Google Scholar 

  • Chen YH, Del Genio AD (2009) Evolution of tropical cloud regimes in observations and a general circulation model. Clim Dyn 32:355–369. doi:10.1007/S00382-008-0386-6

    Article  Google Scholar 

  • Drbohlav H, Wang B (2005) Mechanism of the northward propagating intraseasonal oscillation: insights from a zonally symmetric model. J Clim 18:952–972. doi:10.1175/JCLI3306.1

    Article  Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022

    Article  Google Scholar 

  • Fu X, Wang B, Li T, McCreary JP (2003) Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J Atmos Sci 60:1733–1753

    Article  Google Scholar 

  • Fu X, Wang B, Tao L (2006) Satellite data reveal the 3-D moisture structure of tropical intraseasonal oscillation and its coupling with underlying ocean. Geophys Res Lett 33:L03705. doi:10.1029/2005GL025074

    Article  Google Scholar 

  • Goswami BN (2005) South Asian summer monsoon. In: Lau WK-M, Waliser DE (eds) Intraseasonal variability of the atmosphere-ocean climate system. Springer, Berlin, pp 19–61

    Chapter  Google Scholar 

  • Goswami BN, Shukla J (1984) Quasi-periodic oscillations in a symmetric general circulation model. J Atmos Sci 41:20–37

    Article  Google Scholar 

  • Goswami BN, Xavier PK (2003) Potential predictability and extended range prediction of Indian summer monsoon breaks. Geophys Res Lett 30(18):1966. doi:10.1029/2003GL017,810,2003

    Article  Google Scholar 

  • Goswami BN, Wheeler MC, Gottschalck JC, Waliser DE (2011) Intra-seasonal variability and forecasting: a review of recent research. The global monsoon system: research and forecast, vol 5, 2nd edn. World Scientific Publication Company in collaboration with WMO, pp 389–407

  • Grecu M, Olson WS (2006) Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J Appl Meteor Climatol 45:416–433

    Article  Google Scholar 

  • Grecu M, Olson WS, Shie C-L, L’Ecuyer TS, Tao W-K (2009) Combining satellite microwave radiometer and radar observations to estimate atmospheric latent heating profiles. J Clim 22:6356–6376

    Article  Google Scholar 

  • Haddad ZS, Smith EA, Kummerow CD, Iguchi T, Farrar MR, Durden SL, Alves M, Olson WS (1997a) The TRMM ‘day-1’ radar/radiometer combined rain-profiling algorithm. J Meteorol Soc Jpn 75:799–809

    Google Scholar 

  • Haddad ZS, Short DA, Durden SL, Im E, Hensley S, Grable MB, Black RA (1997b) A new parametrization of the rain drop size distribution. IEEE Trans Geosci Remote Sens 35:532–539. doi:10.1109/36.581961

    Article  Google Scholar 

  • Houze RA (1997) Stratiform precipitation in regions of convection: a meteorological paradox? Bull Am Meteorol Soc 78:2179–2196

    Article  Google Scholar 

  • Houze RA (2004) Mesoscale convective systems. Rev Geophys 42:4. doi:10.1029/2004RG000150

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50. doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • Iguchi T, Kozu T, Meneghini R, Awaka J, Okamoto K (2000) Rain profiling algorithm for the TRMM precipitation radar. J Appl Meteorol 39:2038–2052

    Article  Google Scholar 

  • Jakob C, Tselioudis G (2003) Objective identification of cloud regimes in the tropical western Pacific. Geophys Res Lett 30:2082. doi:10.1029/2003GL018367

    Article  Google Scholar 

  • Jiang X, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039

    Article  Google Scholar 

  • Jiang X, Waliser DE, Li JL, Woods C (2011a) Vertical cloud structures of the boreal summer intraseasonal variability based on CloudSat observations and ERA-interim reanalysis. Clim Dyn 36:2219–2232. doi:10.1007/s00382-010-0853-8

    Article  Google Scholar 

  • Jiang X, Waliser DE, Olson WS, Tao W-K, L’Ecuyer TS, Shige S, Li K-F, Yung YL, Lang S, Takayabu YN (2011b) Vertical diabatic heating structure of the MJO: intercomparison between recent reanalyses and TRMM estimates. Mon Weather Rev 139:3208–3223

    Article  Google Scholar 

  • Kikuchi K, Takayabu YN (2004) The development of organized convection associated with the MJO during TOGA COARE IOP: trimodal characteristics. Geophys Res Lett 31:L10101. doi:10.1029/2004GL019601

    Article  Google Scholar 

  • Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J (1998) The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Oceanic Technol 15:809–817

    Article  Google Scholar 

  • Kummerow C, Simpson J, Thiele O, Barnes W, Chang ATC, Stocker E, Adler RF, Hou A, Kakar R, Wentz F, Ashcroft P, Kozu T, Hong Y, Okamoto K, Iguchi T, Kuroiwa H, Im E, Haddad Z, Huffman G, Ferrier B, Olson WS, Zipser E, Smith EA, Wilheit TT, North G, Krishnamurti TN, Nakamura K (2000) The status of the tropical rainfall measuring mission (TRMM) after 2 years in orbit. J Appl Meteorol 39:1965–1982

    Article  Google Scholar 

  • Kummerow C, Hong Y, Olson WS, Yang S, Adler RF, McCollum J, Ferraro R, Petty G, Shin DB, Wilheit TT (2001) The evolution of the Goddard profile algorithm (GPROF) for rainfall estimation from passive microwave sensors. J Appl Meteorol 40:1801–1820

    Article  Google Scholar 

  • Lau WKM, Waliser DE (2005) Intraseasonal variability in the atmosphere–ocean climate system. Springer, Heidelberg, p 474

    Google Scholar 

  • Lawrence DM, Webster PJ (2002) The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection. J Atmos Sci 59:1593–1606

    Article  Google Scholar 

  • Lin JL, Weickman KM, Kiladis GN, Mapes BE, Schubert SD, Suarez MJ, Bacmeister JT, Lee MI (2008) Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J Clim 21:4541–4567. doi:10.1175/2008JCLI1816.1

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in zonal wind in tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillation: a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Prasanna V, Annamalai H (2012) Moist dynamics of extended monsoon breaks over south Asia. J Clim 25:3810–3831. doi:10.1175/JCLI-D-11-00459.1

    Google Scholar 

  • Rossow WB, Tselioudis G, Polak A, Jakob C (2005) Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys Res Lett 32:L21812. doi:10.1029/2005GL024584

    Article  Google Scholar 

  • Sikka DR, Gadgil S (1980) On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Mon Weather Rev 108:1840–1853

    Article  Google Scholar 

  • Tian B, Waliser DE, Fetzer EJ, Lambrigtsen BH, Yung Y, Wang B (2006) Vertical moist thermodynamic structure and spatial-temporal evolution of the MJO in AIRS observations. J Atmos Sci 63:2462–2485

    Article  Google Scholar 

  • Tromeur E, Rossow WB (2010) Interaction of tropical deep convection with the large-scale circulation in the MJO. J Clim 23:1837–1853

    Article  Google Scholar 

  • Waliser DE (2006) Intraseasonal variations. In: Wang B (ed) The Asian monsoon. Springer, Heidelberg, p 787

    Google Scholar 

  • Wang B, Xie X (1997) A model for the boreal summer intraseasonal oscillation. J Atmos Sci 54:72–86

    Article  Google Scholar 

  • Wang N-Y, Liu C, Ferraro R, Wolff D, Zipser E, Kummerow C (2009) The TRMM 2A12 land precipitation product-status and future plans. J Meteorol Soc Jpn 87A:237–253

    Article  Google Scholar 

  • Webster PJ (1983) Mechanisms of monsoon low-frequency variability: surface hydrological effects. J Atmos Sci 40:2110–2124

    Article  Google Scholar 

  • Webster PJ, Hoyos C (2004) Prediction of monsoon rainfall and river discharge on 15–30 day time scales. Bull Amer Met Soc 85(11):1745–1765

    Article  Google Scholar 

  • Wong S, Fetzer EJ, Tian B, Lambrigtsen B (2011) The apparent water vapor sinks and heat sources associated with the intraseasonal oscillation of the Indian summer monsoon. J Clim 24:4466–4479

    Article  Google Scholar 

  • Xavier PK, Marzin C, Goswami BN (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-monsoon relationship. Quart J Roy Meteor Soc 133:749–764

    Article  Google Scholar 

  • Yang B, Fu X, Wang B (2008) Atmosphere-ocean conditions jointly guide convection of the boreal summer intraseasonal oscillation: satellite observations. J Geophys Res 113:D11105. doi:10.1029/2007JD009276

    Article  Google Scholar 

  • Zhang CD (2005) Madden-Julian oscillation. Rev Geophys 43:RG2003. doi:10.1029/2004RG000158

  • Zhang C, Ling J, Hagos SM, Tao W-K, Lang S, Takayabu YN, Shige S, Katsumata M, Olson WS, L’Ecuyer T (2010) MJO signals in latent heating: results from TRMM retrievals. J Atmos Sci 67:3488–3508

    Article  Google Scholar 

Download references

Acknowledgments

IITM, Pune is fully funded by the Ministry of Earth Sciences (MoES), Govt. of India, New Delhi. We would like to thank GSFC/DAAC, NASA for providing MERRA reanalysis, GPCP and TRMM dataset. TRMM diabatic heating dataset is kindly provided by Bill Olson. The work is a part of AS’s Ph.D. dissertation, financially supported by Council of Scientific and Industrial Research (CSIR), Govt. of India. We are also thankful to the three anonymous reviewers for their constructive comments that led to improvement of the manuscript. AS would like to acknowledge Sharmila Sur for helpful discussions. The GrADS software developed by Dr. Brian Doty, COLA is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abhik, S., Halder, M., Mukhopadhyay, P. et al. A possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on TRMM and MERRA reanalysis. Clim Dyn 40, 1611–1624 (2013). https://doi.org/10.1007/s00382-012-1425-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1425-x

Keywords

Navigation