, Volume 40, Issue 5-6, pp 1141-1168
Date: 29 May 2012

Downscaling large-scale climate variability using a regional climate model: the case of ENSO over Southern Africa

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This study documents methodological issues arising when downscaling modes of large-scale atmospheric variability with a regional climate model, over a remote region that is yet under their influence. The retained case study is El Niño Southern Oscillation and its impacts on Southern Africa and the South West Indian Ocean. Regional simulations are performed with WRF model, driven laterally by ERA40 reanalyses over the 1971–1998 period. We document the sensitivity of simulated climate variability to the model physics, the constraint of relaxing the model solutions towards reanalyses, the size of the relaxation buffer zone towards the lateral forcings and the forcing fields through ERA-Interim driven simulations. The model’s internal variability is quantified using 15-member ensemble simulations for seasons of interest, single 30-year integrations appearing as inappropriate to investigate the simulated interannual variability properly. The incidence of SST prescription is also assessed through additional integrations using a simple ocean mixed-layer model. Results show a limited skill of the model to reproduce the seasonal droughts associated with El Niño conditions. The model deficiencies are found to result from biased atmospheric forcings and/or biased response to these forcings, whatever the physical package retained. In contrast, regional SST forcing over adjacent oceans favor realistic rainfall anomalies over the continent, although their amplitude remains too weak. These results confirm the significant contribution of nearby ocean SST to the regional effects of ENSO, but also illustrate that regionalizing large-scale climate variability can be a demanding exercise.