Skip to main content

Advertisement

Log in

A look at the ocean in the EC-Earth climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

EC-Earth is a newly developed global climate system model. Its core components are the Integrated Forecast System (IFS) of the European Centre for Medium Range Weather Forecasts (ECMWF) as the atmosphere component and the Nucleus for European Modelling of the Ocean (NEMO) developed by Institute Pierre Simon Laplace (IPSL) as the ocean component. Both components are used with a horizontal resolution of roughly one degree. In this paper we describe the performance of NEMO in the coupled system by comparing model output with ocean observations. We concentrate on the surface ocean and mass transports. It appears that in general the model has a cold and fresh bias, but a much too warm Southern Ocean. While sea ice concentration and extent have realistic values, the ice tends to be too thick along the Siberian coast. Transports through important straits have realistic values, but generally are at the lower end of the range of observational estimates. Exceptions are very narrow straits (Gibraltar, Bering) which are too wide due to the limited resolution. Consequently the modelled transports through them are too high. The strength of the Atlantic meridional overturning circulation is also at the lower end of observational estimates. The interannual variability of key variables and correlations between them are realistic in size and pattern. This is especially true for the variability of surface temperature in the tropical Pacific (El Niño). Overall the ocean component of EC-Earth performs well and helps making EC-Earth a reliable climate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, volume 2: Salinity. In: Levitus S (ed) NOAA Atlas NESDIS 69. U.S. Government Printing Office, Washington, DC

  • Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA General Circulation Model. Meth Comp Phys 17:173–265

    Google Scholar 

  • Balsamo G, Viterbo P, Beljaars A, van den Hurk BJJM, Betts A, Scipal K (2009) A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J Hydrometeorol 10:623–643

    Article  Google Scholar 

  • Barnier B, Brodeau L, Le Sommer J, Molines J-M, Penduff T, Theetten S, Treguier A-M, Madec G, Biastoch A, Böning C, Dengg J, Gulev S, Bourdallé Badie R, Chanut J, Garric G, Alderson S, Coward A, de Cuevas B, New A, Haines K, Smith G, Drijfhout S, Hazeleger W, Severijns C, Myers P (2007) Eddy-permitting ocean circulation hindcasts of past decades. Clivar Exchanges 12:8–10

    Google Scholar 

  • Bechtold P, Köhler M, Jung T, Leutbecher M, Rodwell M, Vitart F, Balsamo G (2008) Advances in predicting atmospheric variability with the ECMWF model, 2008: From synoptic to decadal time-scales. Q J R Meteorol Soc 134:1337–1351

    Article  Google Scholar 

  • Belchansky GI, Douglas DC, Platonov NG (2008) Fluctuating Arctic sea ice thickness changes estimated by an in-situ learned and empirically forced neural network model. J Clim 21:716–729. doi:10.1175/2007JCLI1787.1

    Article  Google Scholar 

  • Biastoch A, Böning C, Getzlaff J, Moline J-M, Madec G (2008) Causes of interannualdecadal variability in the meridional overturning circulation of the Midlatitude North Atlantic Ocean. J Clim 21:6599–6615. doi:10.1175/2008JCLI2404.1

    Article  Google Scholar 

  • Bouillon S, Morales Maqueda MA, Legat V, Fichefet T (2009) An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids. Ocean Modell 27:174–184. doi:10.1016/j.ocemod.2009.01.004

    Article  Google Scholar 

  • Cavalieri D, Parkinson C, Gloersen P, Zwally HJ (1996) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data. National Snow and Ice Data Center. Digital media, Boulder (updated 2008)

  • Cheng W, Bleck R, Rooth C (2004) Multi-decadal thermohaline variability in an ocean-atmosphere general circulation model. Clim Dyn 22:573–590

    Google Scholar 

  • Conkright ME, Locarnini RA, Garcia HE, OBrien TD, Boyer TP, Stephens C, Antonov JI (2002) World Ocean Atlas 2001: objective analyses, data statistics, and figures, CD-ROM documentation. National Oceanographic Data Center, Silver Spring

  • Cunningham SA, Alderson SG, King BA, Brandon MA (2003) Transport and variability of the Antarctic circumpolar current in Drake passage. J Geophys Res 108(C5):8084. doi:10.1029/2001JC001147

    Article  Google Scholar 

  • Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495

    Article  Google Scholar 

  • DeWeaver E, Bitz CM (2006) Atmospheric circulation and Its effect on Arctic Sea Ice in CCSM3 simulations at medium and high resolution. J Clim 19:2415–2436

    Article  Google Scholar 

  • Dickson R, Meincke J, Malmberg SA, Lee A (1988) The “great salinity anomaly” in the northern North Atlantic, 1968–1982. Progr Oceanogr 20:103–151

    Article  Google Scholar 

  • Dong S, Sprintall J, Gille ST, Talley L (2008) Southern ocean mixed-layer depth from Argo float profiles. J Geophys Res 113:C06013. doi:10.1029/2006JC004051

    Article  Google Scholar 

  • Dutra E, Balsamo G, Viterbo P, Miranda PMA, Beljaars A, Schär C, Elder K (2010) An improved snow scheme for the ECMWF land surface model: description and offline validation. J Hydrometeorol 11:899–916. doi:10.1175/2010JHM1249.1

    Article  Google Scholar 

  • ECMWF (2006) IFS documentation. Available at http://www.ecmwf.int/research/ifsdocs/CY31R1/index.html

  • Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12,609–12,646. doi:10.1029/97JC00480

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal Mixing in Ocean Circulation Models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Gibson JK, Kållberg P, Uppala S, Hernandez A, Nomura A, Serrano E (1997) ERA description. ECMWF reanalysis project report 1, ECMWF, Reading, UK, 72 pp

  • Gnanadesikan A, Hallberg RW (2000) On the relationship of the circumpolar current to southern hemisphere winds in coarse-resolution ocean models. J Phys Oceanogr 30:2013–2034

    Article  Google Scholar 

  • Goosse H, Selten F, Haarsma R, Opstegh J (2002) A mechanism of decadal variability of the sea-ice volume in the Northern Hemisphere. Clim Dyn 19:61–83

    Article  Google Scholar 

  • Grist JP, Josey SA (2003) Inverse analysis adjustment of the SOC air-sea flux climatology using ocean heat transport constraints. J. Clim 20:3274–3295

    Article  Google Scholar 

  • Haak H, Jungclaus J, Mikolajewicz U, Latif M (2003) Formation and propagation of great salinity anomalies. Geophys Res Lett 30(9):26/1–126/4

    Article  Google Scholar 

  • Häkkinen S (1999) A simulation of thermohaline effects of a great salinity anomaly. J Clim 6:1781–1795

    Article  Google Scholar 

  • Hamilton P, Larsen JC, Leaman KD, Lee TN, E. Waddell E (2005) Transports through the Straits of Florida. J Phys Oceanogr 35:308–322

    Article  Google Scholar 

  • Hazeleger W, Severijns C, Semmler T, Ştefǎnescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, van den Hurk B, Jimenez P, Jones C, Kållberg P, Koenigk T, McGrath R, Miranda P, van Noije T, Palmer T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willén U (2010) EC-Earth: a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91:1357–1363. doi:10.1175/2010BAMS2877.1

    Article  Google Scholar 

  • Hazeleger W, Wang X, Severijns C, Ştefănescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, Van den Hurk B, Van Noije T, Van der Linden E, Van den Wiel K (2011) EC-Earth V2: description and validation of a new seamless Earth system prediction model. Clim. Dyn. doi:10.1007/s00382-011-1228-5

  • Huang CJ, Qiao F, Song Z, Ezer T (2011) Improving simulations of the upper ocean by inclusion of surface waves in the Mellor-Yamada turbulence scheme. J Geophys Res 116:C01007. doi:10.1029/2010JC006320

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031

    Article  Google Scholar 

  • Kanzow T, Cunningham SA, Johns WE, Hirschi JJ-M, Marotzke J, Baringer MO, Meinen CS, Chidichimo MP, Atkinson C, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J Clim 23:5678–5698. doi:10.1175/2010JCLI3389.1

    Article  Google Scholar 

  • Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589

    Article  Google Scholar 

  • Koenigk T, Mikolajewicz U, Haak H, Jungclaus J (2006) Variability of Fram Strait sea ice export: causes, impacts and feedbacks in a coupled climate model. Clim Dyn 26:17–34. doi:10.1007/s00382-005-0060-1

    Article  Google Scholar 

  • Kwok R, Cunningham G, Pang S (2004) Fram Strait sea ice outflow. J Geophys Res 109:C01009. doi:10.1029/2003JC001785

    Article  Google Scholar 

  • Lavender K, Davis R, Owens W (2002) Observations of open-ocean deep convection in the Labrador Sea from subsurface floats. J Phys Oceanogr 32(2):511–526

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68. U.S. Government Printing Office, Washington, DC

  • Madec G (2008) NEMO ocean engine. Note du Pole de modélisation. Institut Pierre-Simon Laplace (IPSL), Paris, France, No 27 ISSN No 1288–1619

  • Morawitz W, Sutton P, Worcester P, Cornuelle B, Lynch J, Pawlowitz R (1996) Three-dimensional observations of a deep convective chimney in the Greenland Sea during winter 1988/89. J Phys Oceanogr 26:2316–2343

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38:2379–2413

    Article  Google Scholar 

  • Rothrock DA, Zhang J, Yu Y (2003) The Arctic ice thickness anomaly of the 1990s: a consistent view from observations and models. J Geophys Res 108(C3):30–83. doi:10.1029/2001JC001208

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter 110 (Winter 2006/07, 11 pp)

  • Smith GC, Bretherton D, Gemmell A, Haines K, Mugford R, Stepanov V, Valdivieso M, Zuo H (2010) Ocean reanalysis studies in reading: reconstructing water mass variability and transports. Mercator Ocean Q Newslett 36:39–49

    Google Scholar 

  • Smith GC, Haines K, Kanzow T, Cunningham S (2010) Impact of hydrographic data assimilation on the modelled Atlantic meridional overturning circulation. Ocean Sci 6:761–774. doi:10.5194/os-6-761-2010

    Article  Google Scholar 

  • Sprintall J, Wijffels SE, Molcard R, Jaya I (2009) Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J Geophys Res 114:C07001. doi:10.1029/2008JC005257

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meterol Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14:3433–3443

    Article  Google Scholar 

  • Tsimplis MN, Bryden HL (2000) Estimation of transports through the Strait of Gibraltar. Deep Sea Res A 47:2219–2242. doi:10.1016/S0967-0637(00)00024-8

    Article  Google Scholar 

  • Valcke S (2006) OASIS3 user guide (prism_2-5). CERFACS technical report TR/CMGC/06/73, PRISM Report No 3, Toulouse, France. 60 pp, http://www.prism.enes.org/Publications/Reports-all_editions/index.php#report02

  • Vancoppenolle M, Fichefet T, Goosse H, Bouillon S, König Beatty C, Morales Maqueda MA (2008) LIM3, an advanced sea-ice model for climate simulation and operational oceanography. Mercator Ocean Q Newslett 28:16–21

  • Vellinga M, Wu P (2004) Low-latitude fresh water influence on centennial variability of the thermohaline circulation. J Clim 17:4498–4511

    Article  Google Scholar 

  • Vinje T (2001) Fram strait ice fluxes and atmospheric circulation: 1950–2000. J Clim 14:3508–3517

    Article  Google Scholar 

  • Wadhams P, Budeus G, Wilkinson J, Loyning T, Pavlov V (2004) The multi-year development of long-lived convective chimneys in the Greenland Sea. Geophys Res Lett 31:L06306. doi:10.1029/2003GL019017

    Article  Google Scholar 

  • Woodgate RA, Aagaard K, Weingartner TJ (2006) Interannual changes in the Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004. Geophys Res Lett 33:L15609. doi:10.1029/2006GL026931

    Article  Google Scholar 

  • Worby AP, Geiger CA, Paget MJ, Van Woert ML, Ackley SF, DeLiberty TL (2008) Thickness distribution of Antarctic sea ice. J Geophys Res 113:C05S92. doi:10.1029/2007JC004254

    Article  Google Scholar 

  • Yaremchuk MI, Nechaev DA, Thompson KR (2001) Seasonal variation of the North Atlantic Current. J Geophys Res 106(C4):6835–6851

    Article  Google Scholar 

Download references

Acknowledgments

We thank ECMWF (Reading, UK), IPSL (Paris, France) and CERFACS (Toulouse, France) for providing us with the IFS, NEMO and OASIS codes, respectively. Simona Ştefǎnescu (ECMWF), Sébastien Masson (IPSL) and Sophie Valcke (CERFACS) provided valuable advice in using them. Computing time to run the model has been provided by ECMWF and ICHEC (Irish Centre for High End Computing). The Kaplan SST V2 data were provided by NOAA/OAR/ESRL PSD (Boulder, Colorado, USA) via their web site (http://www.esrl.noaa.gov/psd). A large part of the plotting was done using Ferret, which is available from NOAA/PMEL at http://www.ferret.noaa.gov. Part of the analysis was done using the CDF-TOOLS package, which was kindly provided by J.M. Molines, Laboratoire des Ecoulements Géophysiques et Industriels, Grenoble, France. TS received funding from the European Community’s 7th Framework Programme (FP7/2007-2013) under grant agreement No. GA212643 (THOR: “Thermohaline Overturning at Risk”, 2008–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Sterl.

Additional information

This paper is a contribution to the special issue on EC-Earth, a global climate and earth system model based on the seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, and developed by the international EC-Earth consortium. This special issue is coordinated by Wilco Hazeleger (chair of the EC-Earth consortium) and Richard Bintanja.

A Flux coupling in EC-Earth

A Flux coupling in EC-Earth

Global conservative regridding of a flux F requires that

$$ F = F^{\ast}, $$
(1)

where the asterisk indicates the flux after regridding. The fluxes can be written as the sum over all grid cells in the source and target grids, respectively,

$$ F = \sum_i f_i A_i, $$
(2)
$$ F^{\ast} = \sum_j f^{\ast}_j A^{\ast}_j. $$
(3)

where f is the grid cell mean flux and A is the grid cell area. Each grid cell can consist of a number of tiles (surface types) with fractional area α t * t ), so that

$$ F = \sum_i \sum_t \alpha_{i,t} f_{i,t} A_i, $$
(4)
$$ F^{\ast} = \sum_j \sum_t \alpha^{\ast}_{j,t} f^{\ast}_{j,t} A^{\ast}_j. $$
(5)

Since both summations have a finite range, they can be swapped

$$ F = \sum_t \sum_i \alpha_{i,t} f_{i,t} A_i, $$
(6)
$$ F^{\ast} = \sum_t \sum_j \alpha^{\ast}_{j,t} f^{\ast}_{j,t} A^{\ast}_j. $$
(7)

In the coupling, flux conservation should be guaranteed for each tile type,

$$ \sum_i \alpha_{i,t} f_{i,t} A_i = \sum_j \alpha^{\ast}_{j,t} f^{\ast}_{j,t} A^{\ast}_j. $$
(8)

The atmosphere model computes the fluxes f i,t for each tile and each grid cell of the atmospheric grid. The tile fractions for land are prescribed and those of the open ocean and sea ice are received from NEMO. The latter are given for the binary ocean mask used by NEMO. The fractions are adjusted to match the land distribution so that the total of land, ocean and sea ice is everywhere equal to one in IFS.

IFS sends the tile fractions α i,t and the tile fraction weighted fluxes α i,t f i,t to NEMO using the first order conservative regridding method of OASIS. This regridding method takes care of the area weights and is locally conservative. This latter property implies that the last equation above is also valid for a single grid cell in the target grid and can be simplified to

$$ \sum_i \alpha_{i,t} f_{i,t} A_i w_{i,j} = \alpha^{\ast}_{j,t} f^{\ast}_{j,t} A^{\ast}_j, $$
(9)

where w i,j is the overlap of the grid cell i in the source grid and the grid cell j in the target grid.

The coupling now works as follows: IFS computes the fluxes for each grid cell and tile type and sends the fields α i,t and α i,t f i,t to NEMO,

$$ \alpha_{i,t} \rightarrow \alpha^{\ast}_{j,t}, $$
(10)
$$ \alpha_{i,t} f_{i,t} \rightarrow (\alpha_{j,t} f_{j,t})^{\ast} \equiv \alpha^{\ast}_{j,t} f^{\ast}_{j,t}, $$
(11)

and NEMO computes the flux for each grid cell and tile type as

$$ f^{\ast}_{j,t} = (\alpha_{j,t} f_{j,t})^{\ast} / \alpha^{\ast}_{j,t}. $$
(12)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sterl, A., Bintanja, R., Brodeau, L. et al. A look at the ocean in the EC-Earth climate model. Clim Dyn 39, 2631–2657 (2012). https://doi.org/10.1007/s00382-011-1239-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1239-2

Keywords

Navigation