Skip to main content
Log in

30 and 43 months period cycles found in air temperature time series using the Morlet wavelet method

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A wavelet-based methodology is applied to relevant climatic indices and air temperature records and allow to detect the existence of unexpected cycles. The scale spectrum shows the presence of two cycles of about 30 and 43 months, respectively, in the air–temperature time series, in addition to the well-known cycles of 1 day and 1 year. The two cycles do not affect the globe uniformly: some regions seem to be more influenced by the period of 30 months (e.g. Europe), while other areas are affected by the period of 43 months (e.g. North-West of the USA). Similar cycles are found in the indices and the regions influenced by these indices: the NAO index and the Western Europe display a cycle of 30 months, while the cycle of 43 months can be found in the ENSO index and in regions where it is known to have an impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arneodo A, Grasseau G, Holschneider M (1988) Wavelet transform of multifractals. PRL 61:2281–2287

    Article  Google Scholar 

  • Arneodo A, d’Aubenton Carafa Y, Bacry E, Graves P, Muzy J, Thermes C (1996) Wavelet based multifractal analysis of DNA sequences. Phys D 96:291–320

    Article  Google Scholar 

  • Arneodo A, Audit B, Decoster N, Muzy J, Vaillant C (2002) Climate disruptions, market crashes and heart attacks. In: Bunde A, Schellnhuber H (eds) The science of disasters. Springer, Berlin, pp 27–102

    Google Scholar 

  • Baldwin MP et al (2001) The quasi-biennial oscillation. Rev Geophys 39:179–229

    Article  Google Scholar 

  • Barnston A, Livezey R (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Berdyugina SV, Usoskin IG (2003) Active longitutes in sunspot activity: century scale persistence. Astron Astrophys 405:1121

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12,106

    Article  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia

    Google Scholar 

  • Fedorov AV, Philander SG (2000) Is El Niño changing? Science 288:1997–2002

    Article  Google Scholar 

  • Goupillaud P, Grossman A, Morlet J (1984) Cycle-octave and related transforms in seismic signal analysis. Geoexploration 23:85–102

    Article  Google Scholar 

  • Hansen J, Ruedy R, JG, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:30,997–31,022

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Jones P, Osborn TJ, Briffa KR, Folland CK, Horton EB, Alexander LV, Parker DE, Rayner NA (2001) Adjusting for sampling density in grid box land and ocean surface temperature time series. J Geophys Res 106:3371–3380

    Article  Google Scholar 

  • Kalnay E et al (1996) Ncep/Ncar 40-year reanalysis project. Bull Am Meteor Soc 77:437–471

    Article  Google Scholar 

  • Keller W (2004) Wavelets in geodesy and geodynamics. Gruyter, Berlin

    Book  Google Scholar 

  • Klein Tank AMG et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453

    Article  Google Scholar 

  • Kronland-Martinet R, Morlet J, Grossmann A (1987) Analysis of sound patterns through wavelet transforms. Int J Pattern Recogn Artif Intell 1:273–302

    Article  Google Scholar 

  • Mallat S (1999) A wavelet tour of signal processing. Academic Press, New-York

    Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Meyer Y (1989) Ondelettes et opérateurs. Hermann, Paris

    Google Scholar 

  • Mursula K, Hiltula T (2004) Systematically asymmetric heliospheric magnetic field: evidence for a quadrupole mode and non-axissymmetry with polarity flip–flops. Sol Phys 224:133–143

    Article  Google Scholar 

  • Nelder J, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Google Scholar 

  • Newton H, Milsom A (1955) Note on the observed differences in spottedness of the Sun’s Northern and Southern Hemispheres. Monthly Not R Astron Soc 115:398:404

    Google Scholar 

  • Nicolay S, Argoul F, Touchon M, d’Aubenton Carafa Y, Thermes C, Arneodo A (2004) Low frequency rhythms in human DNA sequences: a key to the organization of gene location and orientation? PRL 93:108,101

    Article  Google Scholar 

  • Paluš M, Novotná D (2008) Detecting oscillations hidden in noise: common cycles in atmospheric, geomagnetic and solar data. In: Donner R, Barbosa S (eds) Nonlinear time series analysis in geosciences: applications in climatology, geodynamics and solar–terrestrial physics. Springer, Berlin, pp 327–353

    Google Scholar 

  • Paluš M, Novotná D (2006) Quasi-biennal oscillations extracted from monthly NAO index and temperature records are phase-synchronized. Nonlinear Proc Geophys 13:287–296

    Article  Google Scholar 

  • Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19:446–469

    Article  Google Scholar 

  • Schwing F, Murphree T, Green P (2002) The northern oscillation index (NOI): a new climate index for the northeast pacific. Prog Oceanogr 53:115–139

    Article  Google Scholar 

  • Takalo J, Mursula K (2002) Annual and solar rotation periodicities in IMF components: evidence for phase/frequency modulation. Geophys Res Lett 29:31–1–31–4

    Article  Google Scholar 

  • Trenberth K, Hurrell JW (1994) Decadal atmosphere–ocean variations in the pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  • Wolter K, Timlin MS (1993) Monitoring ENSO in coads with a seasonally adjusted principal component index. In: Proceedings of the 17th climate diagnostics workshop, Norman, OK, NOAA/N MC/CAC, NSSL, Oklahoma Clim Survey, CIMMS and the School of Meteor 52–57

  • Wolter K, Timlin MS (1998) Measuring the strength of ENSO events–how does 199798 rank. Weather 53:315–324

    Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability. J Clim 10:1004–1020

    Article  Google Scholar 

  • Zhou S, Miller AJ, Wang J, Angell JK (2001) Trends of NAO and AO and their associations with stratospheric processes. Geophys Res Lett 28:4107–4110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Nicolay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolay, S., Mabille, G., Fettweis, X. et al. 30 and 43 months period cycles found in air temperature time series using the Morlet wavelet method. Clim Dyn 33, 1117–1129 (2009). https://doi.org/10.1007/s00382-008-0484-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0484-5

Keywords

Navigation