Skip to main content

Advertisement

Log in

Orbital forcing and role of the latitudinal insolation/temperature gradient

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Orbital forcing of the climate system is clearly shown in the Earths record of glacial–interglacial cycles, but the mechanism underlying this forcing is poorly understood. Traditional Milankovitch theory suggests that these cycles are driven by changes in high latitude summer insolation, yet this forcing is dominated by precession, and cannot account for the importance of obliquity in the Ice Age record. Here, we investigate an alternative forcing based on the latitudinal insolation gradient (LIG), which is dominated by both obliquity (in summer) and precession (in winter). The insolation gradient acts on the climate system through differential solar heating, which creates the Earths latitudinal temperature gradient (LTG) that drives the atmospheric and ocean circulation. A new pollen-based reconstruction of the LTG during the Holocene is used to demonstrate that the LTG may be much more sensitive to changes in the LIG than previously thought. From this, it is shown how LIG forcing of the LTG may help explain the propagation of orbital signatures throughout the climate system, including the Monsoon, Arctic Oscillation and ocean circulation. These relationships are validated over the last (Eemian) Interglacial, which occurred under a different orbital configuration to the Holocene. We conclude that LIG forcing of the LTG explains many criticisms of classic Milankovitch theory, while being poorly represented in climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aalbersberg G, Litt T (1998) Multiproxy climate reconstructions for the Eemian and Early Weichselian. J Quaternary Sci 13:367–390. doi :10.1002/(SICI)1099-1417(1998090)13:5<367::AID-JQS400>3.0.CO;2-I

    Google Scholar 

  • Baker A, Smart PL, Edwards RL (1995) Paleoclimate implications of mass spectrometric dating of a British flowstone. Geology 23:309–312. doi :10.1130/0091-7613(1995)023<0309:PIOMSD>2.3.CO;2

    Google Scholar 

  • Berger A (1978) Long-term variations of daily insolation and Quaternary climate changes. J Atmos Sci 35:2362–2367. doi :10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2

    Google Scholar 

  • Beyerle U, Rueedi J, Leuenberger M, Aeschbach-Hertig W, Peeters F, Kipfer R, Dodo A (2003) Evidence for periods of wetter and cooler climate in the Sahel between 6 and 40 ka bp derived from groundwater. Geophys Res Lett 30(4):1173. doi:10.1029/2002GL016310

    Google Scholar 

  • Blindheim J, Borovkov V, Hansen B, Malmberg SA, Turrell WR, Osterhus S (2000) Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing. Deep Sea Res Part I Oceanogr Res Pap 47:655–680. doi:10.1016/S0967-0637(99)00070-9

    Google Scholar 

  • Blunier T, Chappellaz J, Schwander J, Dallenbach A, Stauffer B, Stocker TF, Raynaud D, Jouzel J, Clausen HB, Hammer CU, Johnsen SJ (1998) Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394(6695):739–743. doi:10.1038/29447

    Google Scholar 

  • Bohncke S (1991) Palaeohydrological changes in the Netherlands during the last 13,000 years. Thesis, Vrije University, Amsterdam, p 187

  • Bohncke S, Wijmstra L (1988) Reconstruction of late-glacial lake-level fluctuations in the Netherlands based on palaeobotanical analyses, geochemical results and pollen density data. Boreas 17:403–425

    Google Scholar 

  • Bohncke S, Wijmstra L, Vanderwoude J, Sohl H (1988) The lateglacial infill of three lake successions in the Netherlands: regional vegetational history in relation to NW European vegetational developments. Boreas 17:385–402

    Article  Google Scholar 

  • Broecker WS (1992) Upset for Milankovitch theory. Nature 359:779–780. doi:10.1038/359779a0

    Google Scholar 

  • Braconnot P, Joussaume S, de Noblet N, Ramstein G (2000) Mid-Holocene and Last Glacial Maximum African monsoon changes as simulated within the Palaeoclimate Modelling Intercomparison Project. Global Planet Change 26:51–66. doi:10.1016/S0921-8181(00)00033-3

    Google Scholar 

  • Braconnot P, Harrison S, Joussaume CD, Hewitt A, Kitoh JE, Kutzbach J, Liu Z, Otto-Bliesner B, Syktus J, Weber SL (2004) Evaluation of PMIP coupled ocean–atmosphere simulations of the mid-Holocene. In: Battarbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa. Kluwer, Dordrecht, pp 515–533

    Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Fichefet T, Hewitt CD, Kageyamal M, Kitoh A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber L, Yu Y, Zhao Y (2007a) Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 1: experiments and large-scale features. Climates Past 3:261–277

    Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Fichefet T, Hewitt CD, Kageyamal M, Kitoh A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber L, Yu Y, Zhao Y (2007b) Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budgets. Climates Past 3:279–296

    Google Scholar 

  • Bradley R (1999) Paleoclimatology: reconstructing climates of the quaternary, 2nd edn. Academic Press, pp 613, ISBN 012124010X

  • Chapman MR, Shackleton NJ, Zhao M, Eglinton G (1996) Faunal and alkenone reconstructions of subtropical North Atlantic surface hydrology and paleotemperature over the last 28 ka. Paleoceanography 11(3):343–357. doi:10.1029/96PA00041

    Google Scholar 

  • Claussen M (2003) Simulation of Holocene climate change using climate-system models. In: Mackay A, Battarbee R, Birks J, Oldfield F (eds) Global change in the Holocene. Arnold Publishers, ISBN 0 340 76223 3, pp 422–434

  • Clemens SC, Prell WL (2007) The timing of orbital-scale Indian monsoon changes. Quat Sci Rev 26:275–278. doi:10.1016/j.quascirev.2006.11.010

    Google Scholar 

  • COHMAP members (1988) Climatic changes of the last 18,000 years. Observations and model simulations. Science 241:1043–1052

    Google Scholar 

  • Cortijo E, Lehman S, Keigwin L, Chapman M, Paillard D, Labeyrie L (1999) Changes in meridional temperature and salinity gradients in the North Atlantic Ocean (30°–72°) during the last interglacial period. Paleoceanography 14(1):23–33

    Google Scholar 

  • Cuffey KM, Marshall SJ (2000) Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404(6778):591–594

    Google Scholar 

  • Damnati B (2000) Holocene lake records in the Northern Hemisphere of Africa. J Afr Earth Sc 31(2):253–262

    Google Scholar 

  • Davis BAS, Brewer S, Stevenson ACS, Guiot J, Data contributors (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev 22:1701–1716

  • deMenocal PB (1995) Plio-Pleistocene African climate. Science 270:53–59

    Google Scholar 

  • Duplessy J-C, Ivanova E, Murdmaa I, Paterne M, Labeyrie L (2001) Holocene paleoceanography of the northern Barents Sea and variations of the northward heat transport by the Atlantic Ocean. Boreas 30:2–16

    Article  Google Scholar 

  • Felis T, Lohmann G, Kuhnert H, Lorenz SJ, Scholz D, Pätzold J, Al-Rousan SA, Al-Moghrabi SM (2004) Increased seasonality in Middle East temperatures during the last interglacial period. Nature 429:164–168

    Google Scholar 

  • Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003a) Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science 300(5626):1737–1739

    Google Scholar 

  • Fleitmann D, Burns SJ, Neff U, Mangini A, Matter A (2003b) Changing moisture sources over the last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems. Quatern Res 60:223–232

    Google Scholar 

  • Flohn H (1965) Probleme der theoretischen Klimatologie. Naturwissenschaftliche Rundschau 10:385–392

    Google Scholar 

  • Fronval T, Jansen E (1996) Rapid changes in ocean circulation and heat flux In the Nordic seas during the last interglacial period. Nature 383(6603):806–810

    Google Scholar 

  • Gallup CD, Cheng H, Taylor FW, Edwards RL (2002) Direct determination of the timing of sea level change during Termination II. Science 295(5553):310–313

    Google Scholar 

  • Gallimore R, Jacob R, Kutzbach J (2005) Coupled atmosphere–ocean–vegetation simulations for modern and mid-holocene climates: role of extratropical vegetation cover feedbacks. Climate Dynamics 25(7–8):755–776

    Google Scholar 

  • Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998) The influence of vegetation–atmosphere–ocean interaction on climate during the mid-Holocene. Science 280(5371):1916–1919

    Google Scholar 

  • Gladstone RM, Ross I, Valdes PJ, Abe-Ouchi A, Braconnot P, Brewer S, Kageyama M, Kitoh A, Legrande A, Marti O, Ohgaito R, Otto-Bliesner B, Peltier WR, Vettoretti G (2006) Mid-Holocene NAO: a PMIP2 model intercomparison. Geophys Res Lett 32(16):L16707

    Google Scholar 

  • Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421(6921):354–357

    Google Scholar 

  • Harrison S, Digerfeldt G (1993) European lakes as palaeohydrological and palaeoclimatic indicators. Quatern Sci Rev 12:233–248

    Google Scholar 

  • Haug GH, Hughen KA, Sigman DM, Peterson LC, Rőhl U (2001) Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293:1305–1307

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variation in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132

    Google Scholar 

  • Henrich R, Baumann K-H, Huber R, Meggers H (2002) Carbonate preservation records of the past 3 Myr in the Norwegian-Greenland Sea and the northern North Atlantic: implications for the history of NADW production. Mar Geol 184:17–39

    Google Scholar 

  • Herbert TD, Schuffert JD, Andreasen D, Heusser L, Lyle M, Mix A, Ravelo AC, Stott LD, Herguera JC (2001) Collapse of the California current during glacial maxima linked to climate change on land. Science 293(5527):71–76

    Google Scholar 

  • Higginson MJ, Altabet MA, Wincze L, Herbert TD, Murray DW (2004) A solar (irradiance) trigger for millennial–scale abrupt changes in the southwest monsoon? Paleoceanography 19:PA3015. doi:10.1029/2004PA001,031

    Google Scholar 

  • Howard WR (1997) A warm future in the past. Nature 388:418–419

    Google Scholar 

  • Huntley B, Prentice IC (1988) July temperatures in Europe from pollen data, 6000 years before present. Science 241:687–690

    Google Scholar 

  • Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the Marine del-18O record. In: Berger A, Imbrie J, Hays JD, Kukla G, Saltzman B (eds) Milankovitch and Climate, Part 1. Reidel Publishing Co., Dordrecht, pp 269–305

    Google Scholar 

  • Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach JE, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1992) On the structure and origin of major glaciation cycles, 1. Linear responses to Milankovitch forcing. Paleoceanography 7:701–738

    Google Scholar 

  • Imbrie J, Berger A, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1993) On the structure and origin of major glaciation cycles, 2. The 100,000-year cycle. Paleoceanography 8:699–735

    Google Scholar 

  • Jain S, Lall U, Mann ME (1999) Seasonality and interannual variations of Northern Hemisphere temperature: equator-to-pole gradient and land-ocean contrast. J Clim 12:1086–1100

    Google Scholar 

  • Jolly D, Harrison S, Damnati B, Bonnefille R (1998) Simulated climate and biomes of Africa during the late Quaternary: comparison with pollen and lake status data. Quatern Sci Rev 17:629–657

    Google Scholar 

  • Joussaume S, Taylor KE, Braconnot P, Mitchell JFB, Kutzbach JE, Harrison SP, Prentice IC, Broccoli AJ, Abe-Ouchi A, Bartlein PJ, Bonfils C, Dong B, Guiot J, Herterich K, Hewitt CD, Jolly D, Kim JW, Kislov A, Kitoh A, Moutre MF, Masson V, McAvaney B, McFarlane N, de Noblet N, Peltier WR, Peterschmitt JY, Pollard D, Rind D, Royer JF, Schlesinger ME, Syktus J, Thompson S, Valdes V, Vettoretti G, Webb RS, Wyputta U (1999) Monsoon changes for 5000 years ago: results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophys Res Lett 26:859–862. doi:10.1029/1999GL900126

    Google Scholar 

  • Karner DB, Muller RA (2000) A causality problem for Milankovitch: Science 288:2143–2144

    Google Scholar 

  • Kerwin MW, Overpeck JT, Webb RS, DeVernal A, Rind DH, Healy RJ (1999) The role of oceanic forcing in mid-Holocene Northern Hemispheric climatic change. Paleoceanography 14:200–210

    Google Scholar 

  • Kim J-H, Rimbu N, Lorenz SJ, Lohmann G, Nam S-I, Schouten S, Rühlemann C, Schneider RR (2004) North Pacific and North Atlantic sea-surface temperature variability during the Holocene. Quat Sci Rev 23(20–22):2141–2154

    Google Scholar 

  • Kleidon A, Fraedrich K, Kunz T, Lunkeit F (2003) The atmospheric circulation and states of maximum entropy production. Geophys Res Lett 30(23):2223

    Google Scholar 

  • Kukla GJ (2000) The last interglacial. Science 287(5455):987–988

    Google Scholar 

  • Kutzbach JE, Street-Perrott FA (1985) Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 ka bp. Nature 317:130–134

    Google Scholar 

  • Kutzbach JE, Liu Z (1997) Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278:440–443

    Google Scholar 

  • Larrasoaña JC, Roberts AP, Rohling EJ, Winklhofer M, Wehausen R (2003) Three million years of monsoon variability over the northern Sahara. Climate Dynamics 21:689–698

    Google Scholar 

  • Lauritzen SE (1995) High-resolution paleotemperature proxy record for the Last Interglaciation based on Norwegian speleothems. Quatern Res 43:133–146

    Google Scholar 

  • Lea DW (2001) Ice Ages, the California Current and Devils Hole. Science 293(5527):59–60

    Google Scholar 

  • Lindzen RS (1994) Climate dynamics and global change. Ann Revue Fluid Mech 26:353–378

    Google Scholar 

  • Liu ZH, Herbert TD (2004) High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature 427(6976):720–723

    Google Scholar 

  • Lourens LJ, Antonarakou A, Hilgen FJ, Van Hoof AAM, Vergnaud-Grazzini C, Zachariasse WJ (1996) Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11(4):391–413

    Google Scholar 

  • Lourens LJ, Wehausen R, Brumsack HJ (2001) Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. Nature 409:1029–1033

    Google Scholar 

  • Loutre M-F, Pailard D, Vimeux F, Cortijo E (2004) Does the mean annual insolation have the potential to change the climate? Earth Planet Sci Lett 221:1–14

    Google Scholar 

  • Lunt DJ, de Noblet-Ducoudre N, Charbit S (2004) Effects of a melted greenland ice sheet on climate, vegetation, and the cryosphere. Climate Dynamics 23(7–8):679–694

    Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382

    Google Scholar 

  • Marchal O, Cacho I, Stocker T, Grimalt JO, Calvo E, Martrat B, Shackleton N, Vautravers M, Cortijo E, van Kreveld S, Andersson C, Koç N, Chapman M, Sbaffi L, Duplessy J-C, Sarnthein M, Turon J-L, Duprat J, Jansen E (2002) Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quatern Sci Rev 21:455–483

    Google Scholar 

  • Masson V, Cheddadi R, Braconnot P, Joussaume S, Texier S, PMIP-participating-groups (1999) Mid-Holocene climate in Europe: what can we infer from PMIP model-data comparisons ? Climate Dynamics 15:163–182

  • Masson-Delmotte V, Jouzel J, Landais A, Stievenard M, Johnsen SJ, White JWC, Werner M, Sveinbjornsdottir A, Fuhrer K (2005) GRIP Deuterium Excess reveals rapid and orbital-scale changes in Greenland Moisture Origin. Science 309(5731):118–121

    Google Scholar 

  • Milankovitch M (1930) Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen. In: Koeppen W, Geiger R (eds) Handbuch der Klimatologie. Gebrueeder Borntraeger, Berlin, pp 1–176

    Google Scholar 

  • Mitchell TD, Hulme M, New M (2002) Climate data for political areas. Area 34:109–112 (Dataset reference CRU TS 2.0 available at: http://www.cru.uea.ac.uk/~timm/grid/index.html)

    Google Scholar 

  • Moritz RE, Bitz CM, Steig EJ (2002) Dynamics of recent change in the Arctic. Science 297(5586):1497–1502

    Google Scholar 

  • Mulitza S, Ruhlemann C (2000) African Monsoonal precipitation modulated by interhemispheric temperature gradients. Quatern Res 53:270–274

    Google Scholar 

  • Nesje A, Lie Ø, Olaf Dahl S (2000) Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? J Quatern Sci 15(6):587–601

    Google Scholar 

  • Nesje A, Matthews JA, Olaf Dahl S, Berrisford MS, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. The Holocene 11(3):267–280

    Google Scholar 

  • Parrenin F, Paillard D (2003) Amplitude and phase of glacial cycles from a conceptual model. Earth Planet Sci Lett 214:243–250

    Google Scholar 

  • Paillard D (1998) The timing of Pleistocene glaciations from a simple multi-state climate model. Nature 391:378–381

    Google Scholar 

  • Paillard D (2001) Glacial cycles: toward a new paradigm. Rev Geophy 39(3):325–346

    Google Scholar 

  • Paltridge GW (1975) Global dynamics and climate change: a system of minimum entropy exchange. Q J Royal Meteorol Soc 101:475–484

    Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York

    Google Scholar 

  • Peltier RW (1994) Ice age paleotopography. Science 265(5169):195–201

    Google Scholar 

  • Peyron O, Jolly D, Bonnefille R, Vincens A, Guiot J (2000) Climate of East Africa 6000 14C Yr bp as inferred from pollen data. Quatern Res 54:90–101

    Google Scholar 

  • Pickart RS, Spall MA, Ribergaard MH, Moore GWK, Milliff RF (2003) Deep convection in the. Irminger Sea forced by the Greenland tip jet. Nature 424:152–156

    Google Scholar 

  • Pierrehumbert RT (2002) The hydrologic cycle in deep-time problems. Nature 419(6903):191–198

    Google Scholar 

  • Raymo ME, Nisancioglu K (2003) The 41 ka world: Milankovitch’s other unsolved mystery. Paleoceanography 18(1):1011

    Google Scholar 

  • Reijmer CH, Van Den Broeke MR, Schelle MP (2002) Air parcel trajectories and snowfall related to five deep drilling locations in Antarctica based on the ERA-15 dataset. J Clim 15:1957–1968

    Google Scholar 

  • Rimbu N, Lohmann G, Kim J-H, Arz HW, Schneider R (2003) Arctic/North Atlantic Oscillation signature in Holocene sea surface temperature trends as obtained from alkenone data. Geophys Res Lett 30(6):1280

    Google Scholar 

  • Rimbu N, Lohmann G, Lorenz SJ, Kim J-H, Schneider RR (2004) Holocene climate variability as derived from alkenone sea surface temperature and coupled ocean–atmosphere model experiments. Climate Dynamics 23:215–227

    Google Scholar 

  • Rind D (1998) Latitudinal temperature gradients and climate change. J Geophys Res 103:5943–5971

    Google Scholar 

  • Rossignol-Strick M, Nesteroff W, Olive P, Vergnaud-Grazzini C (1982) After the deluge: Mediterranean stagnation and sapropel formation. Nature 295:105–110

    Google Scholar 

  • Rossignol-Strick M, Paterne M, Bassinot FC, Emeis K-C, de Lange GJ (1998) An unusual mid-Pleistocene monsoon period over Africa and Asia. Nature 392:269–272

    Google Scholar 

  • Rousseau DD, Hatte Ch, Guiot J, Duzer D, Schevin P, Kukla G (2006) Reconstruction of the Grande Pile Eemian using inverse modeling of biomes and δ13C. Quatern Sci Rev 25:2806–2819

    Google Scholar 

  • Ruddiman WF (2003) Orbital insolation, ice volume, and greenhouse gases. Quatern Sci Rev 22(15):1597–1629

    Google Scholar 

  • Ruddiman WF (2006) What is the timing of orbital-scale monsoon changes? Quatern Sci Rev 25(7–8):657–658

    Google Scholar 

  • Ruddiman WF, Mix AC (1993) The North Atlantic and Equatorial Atlantic at 9000 and 6000 yr B.P. In: Wright HE, Kutzbach JE, Webb III T, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds) Global climates since the last glacial maximum. Holocene vegetation and climates of Europe. University of Minnesota Press, Minnesota, pp 94–124

  • Sawada M, Viau AE, Vettoretti G, Peltier WR, Gajewski K (2004) Comparison of North-American pollen-based temperature and global lake-status with Ccma AGCM2 output at 6 ka. Quatern Sci Rev 23:225–244

    Google Scholar 

  • Schrag DP (2000) Climatology: of ice and elephants. Nature 404(6773):23–24

    Google Scholar 

  • Shackleton NJ (2000) The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289:1897–1902

    Google Scholar 

  • Spötl C, Mangini A, Frank N, Eichstädter R, Burns SJ (2002) Start of the last interglacial period at 135 ka: evidence from a high Alpine speleothem. Geology 30(9):815–818

    Google Scholar 

  • Thompson DWJ, Wallace JM (1999) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13(5):1000–1016. Data available from: http://www.atmos.colostate.edu/ao/Data/ao_index.html

    Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Google Scholar 

  • Tzedakis C (2003) Timing and duration of last interglacial conditions in Europe: a chronicle of a changing chronology. Quatern Sci Rev 22:763–768

    Google Scholar 

  • Valdes P (2003) An introduction to climate modelling of the Holocene. In: Mackay A, Battarbee R, Birks J, Oldfield F (eds) Global change in the Holocene. Arnold Publishers, ISBN 0 340 76223 3, pp 20–35

  • Vimeux F, Masson V, Jouzel J, Stievenard M, Petit JR (1999) Glacial-interglacial changes in ocean surface conditions in the Southern Hemisphere. Nature 398(6726):410–413

    Google Scholar 

  • Visbeck M (2002) The Ocean’s role in Atlantic climate variability. Science 297(5590):2223–2224

    Google Scholar 

  • Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quatern Sci Rev 21:295–305

    Google Scholar 

  • Whitfield J (2005) Order out of chaos. Nature 436(7053):905–907

    Google Scholar 

  • Winograd IJ (2002) The California current, Devils hole, and Pleistocene climate. Science 296:7

    Google Scholar 

  • Winograd IJ, Coplen TB, Landwehr JM, Riggs AC, Ludwig KR, Szabo BJ, Kolesar PT, Revesz KM (1992) Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258:255–260

    Google Scholar 

  • Wolff T, Mulitza S, Rühlemann C, Wefer G (1999) Response of the tropical Atlantic thermocline to late Quaternary trade wind changes. Paleoceanography 14(3):374–383

    Google Scholar 

  • Young MA, Bradley RS (1984) Insolation gradients and the paleoclimatic record. In: Berger AL et al (eds) Milankovitch and climate Part 2. D. Reidel, Norwell, pp 707–713

    Google Scholar 

  • Zabel M, Schneider RR, Wagner T, Adegbie AT, de Vries U, Kolonic S (2001) Late Quaternary climate changes in Central Africa as inferred from terreginous input to the Niger Fan. Quatern Res 56:207–217

    Google Scholar 

  • Zachos J, Pagani M, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Google Scholar 

  • Zagwijn WH (1996) An analysis of Eemian climate in western and central Europe. Quatern Sci Rev 15:451–469

    Google Scholar 

  • Zhao Y, Braconnot P, Marti O, Harrison SP, Hewitt C, Kitoh A, Liu Z, Mikolajewicz U, Otto-Bliesner B, Weber SL (2005) A multi-model analysis of role of ocean feedback on the African and Indian monsoon during Mid-Holocene. Clim Dyn 25:777–800. doi:10.1007/s00382-005-0075-7

    Google Scholar 

Download references

Acknowledgments

The contribution by Simon Brewer has been funded in part by the EU MOTIF project (EVK2-2001-00263). We acknowledge the PMIP international modeling groups for providing their data for analysis and the Laboratoire des Sciences du Climat et de l’Environnement (LSCE) for collecting and archiving the model data. The PMIP2/MOTIF Data Archive is supported by CEA, CNRS, the EU project MOTIF (EVK2-CT-2002-00153) and the Programme National d’Etude de la Dynamique du Climat (PNEDC). The analyses were performed using version 11-20-2005 of the database. More information is available on http://pmip2.lsce.ipsl.fr/ and http://motif.lsce.ipsl.fr/. We also acknowledge the resources of the NOAA World Data Centre for Paleoclimatology, the PANGAEA Network for Geoscientific & Environmental Data and the European Pollen Database. We would also like to thank Odile Peyron and Carin Anderson for additional data, as well as comments on early drafts by Jed Kaplan, Erin McClymont, Takeshi Nakagawa and Tony Stevenson, as well as by two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil A. S. Davis.

Appendices

Appendices

1.1 Appendix 1

Data sources and values for mid-Holocene SST data shown in Fig. 3a, sorted first by proxy, then by latitude. The Basis coding indicates how the 6 ka temperature anomaly was calculated; (1) published linear regression equation, (2) 6 ± 0.5 ka reconstruction minus modern SST, (3) 6 ± 0.5 ka reconstruction minus 0 ± 0.5 ka reconstructed SST. The Motif SST data was kindly supplied by Carin Anderson. Pangaea data can be accessed at http://www.pangaea.de. Original data has been used where ever possible, although sources depicted by (D) have been digitised from published diagrams. Please refer to the source reference for the original references cited.

figure a

1.2 Appendix 2

The relationship between sea level and Northern Hemisphere ice cover during Termination I (Holocene) used to infer ice cover from sea level during Termination II (Eemian) in Figs. 10 and 11. The dashed line indicates the estimated Eemian high stand which was higher than today as a result of a reduced Greenland ice sheet.

figure b

1.3 Appendix 3

Detail of Holocene pollen-climate reconstruction for Mekelermeer in the Netherlands (Bohncke et al. 1988; Bohncke and Wijmstra 1988; Bohncke 1991) shown in Fig. 11f. Analysis is based on a modern analogue technique using pollen pft scores as detailed in Davis et al. (2003). Diagram shows loess smoother in bold. Pollen data and chronology (calibrated) is from the European Pollen Database (site #547), accessed with kind permission of the author.

figure c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, B.A.S., Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim Dyn 32, 143–165 (2009). https://doi.org/10.1007/s00382-008-0480-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0480-9

Keywords

Navigation