Climate Dynamics

, Volume 29, Issue 7, pp 661–696

Climate simulations for 1880–2003 with GISS modelE

Authors

    • NASA Goddard Institute for Space Studies
    • Columbia University Earth Institute
  • M. Sato
    • Columbia University Earth Institute
  • R. Ruedy
    • Sigma Space Partners LLC
  • P. Kharecha
    • Columbia University Earth Institute
  • A. Lacis
    • NASA Goddard Institute for Space Studies
    • Department of Earth and Environmental SciencesColumbia University
  • R. Miller
    • NASA Goddard Institute for Space Studies
    • Department of Applied Physics and Applied MathematicsColumbia University
  • L. Nazarenko
    • Columbia University Earth Institute
  • K. Lo
    • Sigma Space Partners LLC
  • G. A. Schmidt
    • NASA Goddard Institute for Space Studies
    • Department of Earth and Environmental SciencesColumbia University
  • G. Russell
    • NASA Goddard Institute for Space Studies
  • I. Aleinov
    • Columbia University Earth Institute
  • S. Bauer
    • Columbia University Earth Institute
  • E. Baum
    • Clean Air Task Force
  • B. Cairns
    • Department of Applied Physics and Applied MathematicsColumbia University
  • V. Canuto
    • NASA Goddard Institute for Space Studies
  • M. Chandler
    • Columbia University Earth Institute
  • Y. Cheng
    • Sigma Space Partners LLC
  • A. Cohen
    • Clean Air Task Force
  • A. Del Genio
    • NASA Goddard Institute for Space Studies
    • Department of Earth and Environmental SciencesColumbia University
  • G. Faluvegi
    • Columbia University Earth Institute
  • E. Fleming
    • NASA Goddard Space Flight Center
  • A. Friend
    • Laboratoire des Sciences du Climat et de l’Environnement
  • T. Hall
    • NASA Goddard Institute for Space Studies
    • Department of Applied Physics and Applied MathematicsColumbia University
  • C. Jackman
    • NASA Goddard Space Flight Center
  • J. Jonas
    • Columbia University Earth Institute
  • M. Kelley
    • Laboratoire des Sciences du Climat et de l’Environnement
  • N. Y. Kiang
    • NASA Goddard Institute for Space Studies
  • D. Koch
    • Columbia University Earth Institute
    • Department of GeologyYale University
  • G. Labow
    • NASA Goddard Space Flight Center
  • J. Lerner
    • Columbia University Earth Institute
  • S. Menon
    • Lawrence Berkeley National Laboratory
  • T. Novakov
    • Lawrence Berkeley National Laboratory
  • V. Oinas
    • Sigma Space Partners LLC
  • Ja. Perlwitz
    • Department of Applied Physics and Applied MathematicsColumbia University
  • Ju. Perlwitz
    • Columbia University Earth Institute
  • D. Rind
    • NASA Goddard Institute for Space Studies
    • Department of Earth and Environmental SciencesColumbia University
  • A. Romanou
    • NASA Goddard Institute for Space Studies
    • Department of Earth and Environmental SciencesColumbia University
  • R. Schmunk
    • Sigma Space Partners LLC
  • D. Shindell
    • NASA Goddard Institute for Space Studies
    • Department of Earth and Environmental SciencesColumbia University
  • P. Stone
    • Massachusetts Institute of Technology
  • S. Sun
    • NASA Goddard Institute for Space Studies
    • Massachusetts Institute of Technology
  • D. Streets
    • Argonne National Laboratory
  • N. Tausnev
    • Sigma Space Partners LLC
  • D. Thresher
    • Department of Earth and Environmental SciencesColumbia University
  • N. Unger
    • Columbia University Earth Institute
  • M. Yao
    • Sigma Space Partners LLC
  • S. Zhang
    • Columbia University Earth Institute
Article

DOI: 10.1007/s00382-007-0255-8

Cite this article as:
Hansen, J., Sato, M., Ruedy, R. et al. Clim Dyn (2007) 29: 661. doi:10.1007/s00382-007-0255-8

Abstract

We carry out climate simulations for 1880–2003 with GISS modelE driven by ten measured or estimated climate forcings. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcings, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcings are due to model deficiencies, inaccurate or incomplete forcings, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880–2003 forcings, we aim to provide a benchmark against which the effect of improvements in the model, climate forcings, and observations can be tested. Principal model deficiencies include unrealistically weak tropical El Nino-like variability and a poor distribution of sea ice, with too much sea ice in the Northern Hemisphere and too little in the Southern Hemisphere. Greatest uncertainties in the forcings are the temporal and spatial variations of anthropogenic aerosols and their indirect effects on clouds.

Supplementary material

Copyright information

© Springer-Verlag 2007