Skip to main content
Log in

Impact of rain snow threshold temperature on snow depth simulation in land surface and regional atmospheric models

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study investigates the impact of rain snow threshold (RST) temperatures on snow depth simulation using the Community Land Model (CLM) and the Weather Research and Forecasting model (WRF—coupled with the CLM and hereafter referred to as WRF_CLM), and the difference in impacts. Simulations were performed from 17 December 1994 to 30 May 1995 in the French Alps. Results showed that both the CLM and the WRF_CLM were able to represent a fair simulation of snow depth with actual terrain height and 2.5°C RST temperature. When six RST methods were applied to the simulation using WRF_CLM, the simulated snow depth was the closest to observations using 2.5°C RST temperature, followed by that with Pipes’, USACE, Kienzle’s, Dai’s, and 0°C RST temperature methods. In the case of using CLM, simulated snow depth was the closest to the observation with Dai’s method, followed by with USACE, Pipes’, 2.5°C RST temperature, Kienzle’s, and 0°C RST temperature method. The snow depth simulation using the WRF_CLM was comparatively sensitive to changes in RST temperatures, because the RST temperature was not only the factor to partition snow and rainfall. In addition, the simulated snow related to RST temperature could induce a significant feedback by influencing the meteorological variables forcing the land surface model in WRF_CLM. In comparison, the above variables did not change with changes in RST in CLM. Impacts of RST temperatures on snow depth simulation could also be influenced by the patterns of temperature and precipitation, spatial resolution, and input terrain heights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auer, A. H., 1974: The rain versus snow threshold temperatures. Weatherwise, 27(2), 67–67, doi: 10.1080/00431672.1974.9931684.

    Article  Google Scholar 

  • Barnett, T. P., L. Dumenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46(5), 661–685.

    Article  Google Scholar 

  • Belair, S., R. Brown, J. Mailhot, B. Bilodeau, and L. P. Crevier, 2003: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. Journal of Hydrometeorology, 4(2), 371–386.

    Article  Google Scholar 

  • Boone, A., and P. Etchevers, 2001: An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: Local-scale evaluation at an Alpine site. Journal of Hydrometeorology, 2(4), 374–394.

    Article  Google Scholar 

  • Braun, L. N., and H. Lang, 1986: Simulation of snowmelt runoff in lowland and lower alpine regions of Switzerland. Modelling Snowmelt-Induced Processes IAHS Publ, No. 155, 125–140.

    Google Scholar 

  • Chevallier, P., Y. Caballero, R. Gallaire, and R. Pillco, 2004: Flow modelling in a high mountain valley equipped with hydropower plants: Rio zongo valley, Cordillera Real, Bolivia. Hydrological Processes, 18(5), 939–957, doi: 10.1002/hyp.1339.

    Article  Google Scholar 

  • Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, and B. Briegleb, 2004: Description of the NCAR community atmosphere model (CAM3). Tech. Rep. NCAR/TN-464+STR, 226pp.

    Google Scholar 

  • Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19(11), 2122–2143.

    Article  Google Scholar 

  • Dai, A., 2008: Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophys. Res. Lett., 35(12), doi: 10.1029/2008GL033295.

    Google Scholar 

  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech. Note NCAR/TN-387 STR 77-77, 80pp.

    Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two dimensional model. J. Atmos. Sci., 46(20), 3077–3107.

    Article  Google Scholar 

  • Essery, R., and P. Etchevers, 2004: Parameter sensitivity in simulations of snowmelt. J. Geophys. Res., 109(D20), doi: 10.1029/2004JD005036.

    Google Scholar 

  • Essery, R., E. Martin, H. Douville, A. Fernandez, and E. Brun, 1999: A comparison of four snow models using observations from an alpine site. Climate Dyn., 15(8), 583–593.

    Article  Google Scholar 

  • Fassnacht, S. R., and E. D. Soulis, 2002: Implications during transitional periods of improvements to the snow processes in the land surface scheme-Hydrological model WATCLASS. Atmos.-Ocean, 40(4), 389–403.

    Article  Google Scholar 

  • Feiccabrino, J., and A. Lundberg, 2008: Precipitation phase discrimination in Sweden. Proc.of the 65th Eastern Snow Conference, Fairlee, Vermont, USA.

    Google Scholar 

  • Fernández, A., 1998: An energy balance model of seasonal snow evolution. Physics and Chemistry of the Earth, 23(5–6), 661–666, doi: 10.1016/S0079-1946(98)00107-4.

    Article  Google Scholar 

  • Gillies, R. R., S. Y. Wang, and W. R. Huang, 2012: Observational and supportive modelling analyses of winter precipitation change in China over the last half century. Int. J. Climatol., 32(5), 747–758, doi: 10.1002/Joc.2303.

    Article  Google Scholar 

  • Jin, J. M., and L. J. Wen, 2012: Evaluation of snowmelt simulation in the weather research and forecasting model. J. Geophys. Res., 117, doi: 10.1029/2011jd016980.

  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43(1), 170–181.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83(11), 1631–1643, doi: 10.1175/Bams-83-11-1631.

    Article  Google Scholar 

  • Kienzle, S. W., 2008: A new temperature based method to separate rain and snow. Hydrological Processes, 22(26), 5067–5085.

    Article  Google Scholar 

  • Koren, V., J. Schaake, K. Mitchell, Q. Y. Duan, F. Chen, and J. M. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104(D16), 19569–19585.

    Article  Google Scholar 

  • L’Hote, Y., P. Chevallier, A. Coudrain, Y. Lejeune, and P. Etchevers, 2005: Relationship between precipitation phase and air temperature: comparison between the Bolivian Andes and the Swiss Alps. Hydrological Sciences Journal, 50(6), 989–997.

    Google Scholar 

  • Loth, B., H. F. Graf, and J. M. Oberhuber, 1993: Snow cover model for global climate simulations. J. Geophys. Res., 98(D6), 10451–10464.

    Article  Google Scholar 

  • Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing doppler profiling radar and surface observations of melting level. Journal of Hydrometeorology, 9(2), 194–211.

    Article  Google Scholar 

  • Marks, D. G., and A. H. Winstral, 2007: Finding the rain/snow transition elevation during storm events in mountain basins. Abstract in Joint Symposium JHW001: Interactions between snow, vegetation, and the atmosphere, the 24th General Assembly of the IUGG, Perugia, Italy, July 2–13.

    Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16663–16682.

    Article  Google Scholar 

  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62(6), 1665–1677.

    Article  Google Scholar 

  • Motoyama, H., 1990: Simulation of seasonal snowcover based on air-temperature and precipitation. J. Appl. Meteor., 29(11), 1104–1110.

    Article  Google Scholar 

  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107(2), 401–427.

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi: 01010.01029/02007JG000563.

    Article  Google Scholar 

  • Pipes, A., and M. C. Quick, 1977: UBC watershed model users guide. Department of civil engineering, University of British Columbia: Vancouver, British Columbia, Canada.

    Google Scholar 

  • Rohrer, M., 1989: Determination of the transition air temperature from snow to rain and intensity of precipitation. Presented at Workshop on Precipitation Measurement, St. Moritz, Switzerland, 475–482.

    Google Scholar 

  • Schlosser, C. A., A. Robock, K. Y. Vinnikov, N. A. Speranskaya and Y. K. Xue, 1997: 18-year land-surface hydrology model simulations for a midlatitude grassland catchment in Valdai, Russia. Mon. Wea. Rev., 125(12), 3279–3296.

    Article  Google Scholar 

  • Schreider, S. Y., P. H. Whetton, A. J. Jakeman, and A. B. Pittock, 1997: Runoff modelling for snow-affected catchments in the Australian alpine region, eastern Victoria. J. Hydrol., 200(1–4), 1–23, doi: 10.1016/S0022-1694(97)00006-1.

    Article  Google Scholar 

  • Shewchuk, S. R., 1997: Surface mesonet for BOREAS. J. Geophys. Res., 102(D24), 29077–29082, doi: 10.1029/96jd03875.

    Article  Google Scholar 

  • Skamarock, W. C., and J. B. Klemp, 2008: A timesplit nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227(7), 3465–3485.

    Article  Google Scholar 

  • Strasser, U., P. Etchevers, and Y. Lejeune, 2002: Intercomparison of two snow models with different complexity using data from an alpine site. Nordic Hydrology, 33(1), 15–26.

    Google Scholar 

  • Subin, Z. M., W. J. Riley, J. Jin, D. S. Christianson, M. S. Torn, and L. M. Kueppers, 2011: Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land surface model (WRF3-CLM3.5). Earth Interactions, 15, 1–38., doi: http://dx.doi.org/10.1175/2010EI331.1.

    Article  Google Scholar 

  • Sun, S. F., and Y. K. Xue, 2001: Implementing a new snow scheme in simplified simple biosphere model. Adv. Atmos. Sci., 18(3), 335–354, doi: 10.1007/BF02919314.

    Article  Google Scholar 

  • U.S. Army Corps of Engineers, 1956: Summary report of the snow investigation-Snow hydrology, North Pacific Division report, Portland, Oregon, 437pp.

    Google Scholar 

  • Walsh, J. E., W. H. Jasperson, and B. Ross, 1985: Influences of snow cover and soil-Moisture on monthly air-temperature. Mon. Wea. Rev., 113(5), 756–768.

    Article  Google Scholar 

  • Yang, Z. L., R. E. Dickinson, A. Robock, and K. Y. Vinnikov, 1997: Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data. J. Climate, 10(2), 353–373.

    Article  Google Scholar 

  • Yeh, T.-C., R. T. Wetherald, and S. Manabe, 1983: A model study of the short-term climate and hydrologic effects of sudden snowcover removal. Mon. Wea. Rev., 111, 1013–1024.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Wen  (文莉娟).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, L., Nagabhatla, N., Lü, S. et al. Impact of rain snow threshold temperature on snow depth simulation in land surface and regional atmospheric models. Adv. Atmos. Sci. 30, 1449–1460 (2013). https://doi.org/10.1007/s00376-012-2192-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2192-7

Key words

Navigation