Advances in Atmospheric Sciences

, Volume 28, Issue 4, pp 927–944

Effects of crop growth and development on land surface fluxes

Article

DOI: 10.1007/s00376-010-0105-1

Cite this article as:
Chen, F. & Xie, Z. Adv. Atmos. Sci. (2011) 28: 927. doi:10.1007/s00376-010-0105-1

Abstract

In this study, the Crop Estimation through Resource and Environment Synthesis model (CERES3.0) was coupled into the Biosphere-Atmosphere Transfer Scheme (BATS), which is called BATS CERES, to represent interactions between the land surface and crop growth processes. The effects of crop growth and development on land surface processes were then studied based on numerical simulations using the land surface models. Six sensitivity experiments by BATS show that the land surface fluxes underwent substantial changes when the leaf area index was changed from 0 to 6 m2 m −2. Numerical experiments for Yucheng and Taoyuan stations reveal that the coupled model could capture not only the responses of crop growth and development to environmental conditions, but also the feedbacks to land surface processes. For quantitative evaluation of the effects of crop growth and development on surface fluxes in China, two numerical experiments were conducted over continental China: one by BATS CERES and one by the original BATS. Comparison of the two runs shows decreases of leaf area index and fractional vegetation cover when incorporating dynamic crops in land surface simulation, which lead to less canopy interception, vegetation transpiration, total evapotranspiration, top soil moisture, and more soil evaporation, surface runoff, and root zone soil moisture. These changes are accompanied by decreasing latent heat flux and increasing sensible heat flux in the cropland region. In addition, the comparison between the simulations and observations proved that incorporating the crop growth and development process into the land surface model could reduce the systematic biases of the simulated leaf area index and top soil moisture, hence improve the simulation of land surface fluxes.

Key words

crop growth and development leaf area index land surface model land surface fluxes 

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Feng Chen (陈 锋)
    • 1
    • 2
  • Zhenghui Xie (谢正辉)
    • 1
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Zhejiang Institute of Meteorological SciencesHangzhouChina

Personalised recommendations