Skip to main content

Advertisement

Log in

Soil fauna abundance and diversity in a secondary semi-evergreen forest in Guadeloupe (Lesser Antilles): influence of soil type and dominant tree species

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The importance of secondary tropical forests regarding the maintenance of soil fauna abundance and diversity is poorly known. The aims of this study were (1) to describe soil fauna abundance and diversity and (2) to assess the determinants of soil fauna abundance and diversity in two stands of a tropical semi-evergreen secondary forest. Soil macrofauna and microarthropod abundance and soil macrofauna diversity were described at two sites developed on different soils and with different site histories: (1) a natural secondary stand (natural forest) under two dominant tree species, Pisonia subcordata and Bursera simaruba, and (2) a planted secondary forest (planted forest) under three tree species, B. simaruba, Swietenia macrophylla, and Tabebuia heterophylla. The effects of both soil and main tree species’ litter quality were assessed to explain soil fauna abundance and diversity. The abundance of soil macrofauna was significantly higher in the soil under the planted forest, and soil fauna communities were contrasted between the two sites. In the planted forest, a soil-dwelling macrofauna community developed (mainly consisting of the anecic earthworm Polypheretima elongata). In the natural forest, soil macrofauna and microarthropod communities were located at the soil surface. The effect of plant litter quality varied according to each dominant tree species and was superimposed to soil effect. The lowest macrofauna abundance was associated with B. simaruba in the natural forest. T. heterophylla supported a much greater macrofauna community than the two other tree species studied at the same soil, and it appears likely that this is due to the palatability of its leaves compared with the other trees (low lignin, tannins, soluble phenols).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alegre JC, Pashanasi B, Lavelle P (1996) Dynamics of soil physical properties in a low input agricultural system inoculated with the earthworm Pontoscolex corethrurus in the Amazon region of Peru. Soil Sci Soc Am J 60:1522–1529

    Article  CAS  Google Scholar 

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods, 2nd edn. CAB International, Oxon

    Google Scholar 

  • Bernhard-Reversat F, Laclau JP, Loubana PM, Loumeto JJ, Mboukou IMC, Reversat G (2001) Changes in biological factors of fertility in managed eucalyptus plantations on a savanna soil in Congo. In: Kobayashi S et al (eds) Rehabilitation of degraded tropical forest ecosystems: workshop proceedings. CIFOR, Bogor, pp 179–190

    Google Scholar 

  • Blanchart E, Lavelle P, Braudeau E, Le Bissonais Y, Valentin V (1997) Regulation of soil structure by geophagous earthworm activities in humid savannas of Côte d’Ivoire. Soil Biol Biochem 29:431–439

    Article  CAS  Google Scholar 

  • Bocock KL, Gilbert O, Capstick CK, Twinn DC, Waid JS, Woodman MJ (1960) Changes in leaf litter when placed on the surface of soils with contrasting humus types. I. Losses in dry weight of oak and ash leaf litter. J Soil Sci 11:1–9

    Article  CAS  Google Scholar 

  • Brown S, Lugo AE (1990) Tropical secondary forests. J Trop Ecol 6:1–32

    Article  Google Scholar 

  • Didden WAM (1987) Reactions of Onychiurus fimatus (Collembola) to loose and compact soil. Methods and first results. Pedobiologia 30:93–100

    Google Scholar 

  • Driessen P, Deckers J, Spaargaren O, Nachtergaele F (2001) Lecture notes on the major soils of the world. FAO, Rome

    Google Scholar 

  • Gillespie TW (1999) Life history characteristics and rarity of woody plants in tropical dry forest fragments of Central America. J Trop Ecol 15:637–649

    Article  Google Scholar 

  • Hagerman AE, Butler LG (1978) Protein precipitation method for the quantitative determination of tannins. J Agric Food Chem 26:809–812

    Article  CAS  Google Scholar 

  • Harbone JB (1997) Role of phenolic secondary metabolites in plants and their degradation in nature. In: Cadish G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, London, pp 67–74

    Google Scholar 

  • Höfer H, Hanagarth W, Garcia M, Martius C, Franklin E, Römbke J, Beck L (2001) Structure and function of soil fauna communities in Amazonian anthropogenic and natural ecosystems. Eur J Soil Biol 37:229–235

    Article  Google Scholar 

  • Imbert D, Portecop J (1992) La forêt tropicale semi-décidue de la Guadeloupe: structures spatiales et production de litière dans la région nord de la Grande-Terre. In: Actes Colloque de Botanique (eds) Pérennité et évolution de la flore des Caraïbes. Terre-de-Haut, Guadeloupe, March 1–4, 1990, Conservatoire des jardins et paysages, pp 52–70

  • Jabiol B, Brêthes A, Ponge JF, Toutain F, Brun JJ (1995) L’humus sous toutes ses formes. Service Edition-ENGREF, Nancy

  • Janzen DH (1988) Tropical dry forests: the most endangered major tropical ecosystem. In: Wilson EO (ed) Biodiversity. National Academy, Washington, DC, pp 130–137

    Google Scholar 

  • Jirka AM, Carter MJ (1975) Micro semi-automated analysis of surface and wastewaters for chemical oxygen demand. Anal Chem 47:1397–1402

    Article  PubMed  CAS  Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132

    Article  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer, Amsterdam

    Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Martin S, Spain A, Toutain F, Barois I, Schaefer R (1993) A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–150

    Article  Google Scholar 

  • Lerdau M, Whitbeck J, Holbrook NM (1991) Tropical deciduous forest: death of a biome. Trends Ecol Evol 6:201–202

    Article  Google Scholar 

  • Loranger G (2001) Formes d’humus originales dans une forêt semi-décidue de la Guadeloupe/Particular humus forms in a tropical semi-evergreen forest of Guadeloupe. C R Acad Sci Ser 3 Sci Vie 324:725–732

    CAS  Google Scholar 

  • Loranger G, Ponge JF, Imbert D, Lavelle P (2002) Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biol Fertil Soils 35:247–252

    Article  CAS  Google Scholar 

  • Loranger G, Ponge JF, Lavelle P (2003) Humus forms in two secondary semi-evergreen tropical forest stands. Eur J Soil Sci 54:17–24

    Article  CAS  Google Scholar 

  • Lugo AE (1992) Comparison of tropical tree plantations with secondary forests of similar age. Ecol Monogr 62:1–41

    Article  Google Scholar 

  • Lugo AE, Schmidt R, Brown S (1981) Tropical forests in the Caribbean. Ambio 10:318–324

    Google Scholar 

  • Macfadyen A (1957) Animal ecology. Aims and methods. Pitman, London

    Google Scholar 

  • Marigo G (1973) Sur une méthode de fractionnement et d’estimation des composés phénoliques chez les végétaux. Analusis 2:106–110

    CAS  Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Ann Rev Ecolog Syst 17:67–88

    Article  Google Scholar 

  • Neuhauser EF, Hartenstein R, Connors WJ (1978) Soil invertebrates and the degradation of vanillin, cinnamic acid, and lignins. Soil Biol Biochem 10:431–435

    Article  CAS  Google Scholar 

  • Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 93:297–388

    Google Scholar 

  • Ponge JF (1999) Interaction between soil fauna and their environment. In: Rastin N, Bauhus J (eds) Going underground—ecological studies in forest soils. Research Signpost, Trivandrum, Kerala, pp 45–76

    Google Scholar 

  • Poursin JM, Ponge JF (1984) Etude des peuplements de microarthropodes (Insectes Collemboles et Acariens Oribates) dans trois humus forestiers acides de la Forêt d’Orléans (Loiret, France). Pedobiologia 26:403–414

    Google Scholar 

  • Salmon S, Ponge JF (2001) Earthworm excreta attract soil springtails: laboratory experiments on Heteromurus nitidus (Collembola: Entomobryidae). Soil Biol Biochem 33:1959–1969

    Article  CAS  Google Scholar 

  • Satchell JE (1967) Lumbricidae. In: Burges A, Raw F (eds) Soil biology. Academic, New York, pp 259–322

    Google Scholar 

  • Satchell JE, Lowe DG (1967) Selection of leaf litter by Lumbricus terrestris. In: Graff O, Satchell JE (eds) Progress in soil biology. North Holland Company, Amsterdam, pp 102–119

    Google Scholar 

  • Tian G, Brussaard L, Kang BT (1993) Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: effects on soil fauna. Soil Biol Biochem 25:731–737

    Article  Google Scholar 

  • Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for determination of fiber and lignin. J Assoc Off Agric Chem 46:829–835

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Warren W, Zou X (2002) Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. For Ecol Manag 170:161–171

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Professor Jean-Paul Mauriès (Muséum National d’Histoire Naturelle, Paris) for identifying the millipedes at the species level. We thank Serge, Rose, Kenny and Karen Loranger, Patrick Merciris, Alain Dufrénot, Maguy Dulormne, Vanessa Hequet, Rachel Morton, and Emile Timodent for their valuable help in the field and in the laboratory. We thank the “Office National des Forêts” (ONF) for free access to the plantation forest (Pouzzole domain). Thanks are also due to Dr. Jean-Pierre Rossi (INRA Bordeaux-Aquitaine) and Dr. Sébastien Barot (IRD Bondy) for their advices on statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladys Loranger-Merciris.

Appendix

Appendix

Soil macrofauna species and morphospecies collected in a natural forest and in a planted forest in North Grande-Terre (Guadeloupe)

  1. 1.

    Diplopoda: 7 species (Orthomorpha coarctata Saussure; Anadenobolus monilicornis von Porat; Trigoniulus corallinus Gervais; Spirostrophus naresi Pocock; Epinannolene pittieri guadeloupensis Mauriès; Pseudospirobolellus avernus Butler; Siphonophora filiformis Mauriès)

  2. 2.

    Chilopoda: 3 morphospecies

  3. 3.

    Coleoptera: 4 species (Phyllophaga patrueloides Paulian, Phyllophaga pleei Blanchard, Anomala insularis Castelnau, Aspisoma ignita Linnaeus) and 13 morphospecies

  4. 4.

    Formicidae: 4 species (Acromyrmex octospinosus Reich, Ectatomma ruidum Roger, Odontomachus chelifer Latreille, Azteca delpini antillana Forel) and 9 morphospecies

  5. 5.

    Isoptera: 1 species (Nasutitermes costalis Holmgren) and 2 morphospecies

  6. 6.

    Earthworms: 2 species (P. elongata Perrier; A. rodericensis Grube) and 1 morphospecies (Dichogaster sp.)

  7. 7.

    Insect larvae: 17 morphospecies

  8. 8.

    Isopoda: 3 morphospecies

  9. 9.

    Dermaptera: 1 morphospecies

  10. 10.

    Blattodea: 1 species (Hemiblabera granulata Saussure and Zehntner) and 2 morphospecies

  11. 11.

    Araneidae: 13 morphospecies

  12. 12.

    Heteroptera: 2 morphospecies

  13. 13.

    Gasteropoda: 1 morphospecies

  14. 14.

    Turbellaria: 1 morphospecies

  15. 15.

    Homoptera: 1 morphospecies

  16. 16.

    Orthoptera: 2 morphospecies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loranger-Merciris, G., Imbert, D., Bernhard-Reversat, F. et al. Soil fauna abundance and diversity in a secondary semi-evergreen forest in Guadeloupe (Lesser Antilles): influence of soil type and dominant tree species. Biol Fertil Soils 44, 269–276 (2007). https://doi.org/10.1007/s00374-007-0199-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-007-0199-5

Keywords

Navigation