Graphs and Combinatorics

, Volume 18, Issue 1, pp 93–104

Enumerating Foldings and Unfoldings Between Polygons and Polytopes

Authors

  • Erik D. Demaine
    • MIT Laboratory for Computer Science, Cambridge, MA 02139, USA e-mail: edemaine@mit.edu
  • Martin L. Demaine
    • MIT Laboratory for Computer Science, Cambridge, MA 02139, USA e-mail: mdemaine@mit.edu
  • Anna Lubiw
    • Department of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada. e-mail: alubiw@uwaterloo.ca
  • Joseph O'Rourke
    • Department of Computer Science, Smith College, Northampton, MA 01063, USA e-mail: orourke@cs.smith.edu

DOI: 10.1007/s003730200005

Cite this article as:
Demaine, E., Demaine, M., Lubiw, A. et al. Graphs Comb (2002) 18: 93. doi:10.1007/s003730200005

Abstract.

 We pose and answer several questions concerning the number of ways to fold a polygon to a polytope, and how many polytopes can be obtained from one polygon; and the analogous questions for unfolding polytopes to polygons. Our answers are, roughly: exponentially many, or nondenumerably infinite.

Copyright information

© Springer-Verlag Tokyo 2002