, Volume 27, Issue 2, pp 207-214
Date: 21 Aug 2010

On 3-Edge-Connected Supereulerian Graphs

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The supereulerian graph problem, raised by Boesch et al. (J Graph Theory 1:79–84, 1977), asks when a graph has a spanning eulerian subgraph. Pulleyblank showed that such a decision problem, even when restricted to planar graphs, is NP-complete. Jaeger and Catlin independently showed that every 4-edge-connected graph has a spanning eulerian subgraph. In 1992, Zhan showed that every 3-edge-connected, essentially 7-edge-connected graph has a spanning eulerian subgraph. It was conjectured in 1995 that every 3-edge-connected, essentially 5-edge-connected graph has a spanning eulerian subgraph. In this paper, we show that if G is a 3-edge-connected, essentially 4-edge-connected graph and if for every pair of adjacent vertices u and v, d G (u) + d G (v) ≥ 9, then G has a spanning eulerian subgraph.