Graphs and Combinatorics

, Volume 21, Issue 3, pp 319–323

Integer Roots Chromatic Polynomials of Non-Chordal Graphs and the Prouhet-Tarry-Escott Problem

  • Santos Hernández
  • Florian Luca
Article

DOI: 10.1007/s00373-005-0617-0

Cite this article as:
Hernández, S. & Luca, F. Graphs and Combinatorics (2005) 21: 319. doi:10.1007/s00373-005-0617-0

Abstract

In this paper, we give an affirmative answer to a question of Dmitriev concerning the existence of a non-chordal graph with a chordless cycle of order n whose chromatic polynomial has integer roots for a few values of n, extending prior work of Dong et al.

Keywords

Chromatic polynomials of graphs the Prouhet-Tarry-Escott problem 

Copyright information

© Springer-Verlag Tokyo 2005

Authors and Affiliations

  • Santos Hernández
    • 1
    • 2
  • Florian Luca
    • 1
  1. 1.Mathematical InstituteMoreliaMexico
  2. 2.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations