Skip to main content
Log in

Attention-Aware Disparity Control in interactive environments

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Our paper introduces a novel approach for controlling stereo camera parameters in interactive 3D environments in a way that specifically addresses the interplay of binocular depth perception and saliency of scene contents. Our proposed Dynamic Attention-Aware Disparity Control (DADC) method produces depth-rich stereo rendering that improves viewer comfort through joint optimization of stereo parameters. While constructing the optimization model, we consider the importance of scene elements, as well as their distance to the camera and the locus of attention on the display. Our method also optimizes the depth effect of a given scene by considering the individual user’s stereoscopic disparity range and comfortable viewing experience by controlling accommodation/convergence conflict. We validate our method in a formal user study that also reveals the advantages, such as superior quality and practical relevance, of considering our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Recommendation itu-r bt. 2021: Subjective methods for the assessment of stereoscopic 3dtv systems (2012)

  2. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., Seidel, H.P.: A perceptual model for disparity. ACM Trans. Graph. 30(4) (2011). doi:10.1145/2010324.1964991 (Proceedings SIGGRAPH 2011, Vancouver)

  3. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., Seidel, H.P., Matusik, W.: A luminance-contrast-aware disparity model and applications. ACM Trans. Graph. 31(6), 184:1–184:10 (2012)

    Article  Google Scholar 

  4. Greß, A., Guthe, M., Klein, R.: Gpu-based collision detection for deformable parameterized surfaces. Comput. Graph. Forum 25, 497–506 (2006)

    Article  Google Scholar 

  5. Guttmann, M., Wolf, L., Cohen-Or, D.: Semi-automatic stereo extraction from video footage. In: IEEE 12th International Conference on Computer Vision, pp. 136–142. IEEE Press, New York (2009)

    Google Scholar 

  6. Heinzle, S., Greisen, P., Gallup, D., Chen, C., Saner, D., Smolic, A., Burg, A., Matusik, W., Gross, M.: Computational stereo camera system with programmable control loop. ACM Trans. Graph. 30, 94:1–94:10 (2011)

    Article  Google Scholar 

  7. Howard, I.P., Rogers, B.J.: Seeing in Depth. Depth Perception, vol. 2. I Porteous, Toronto (2002)

    Google Scholar 

  8. Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001)

    Article  Google Scholar 

  9. Johnson, S.: The nlopt nonlinear-optimization package (2011). http://ab-initio.mit.edu/nlopt

  10. Jones, G.R., Lee, D., Holliman, N.S., Ezra, D.: Controlling Perceived Depth in Stereoscopic Images. SPIE Press, Bellingham (2001)

    Google Scholar 

  11. Koppal, S., Zitnick, C., Cohen, M., Kang, S.B., Ressler, B., Colburn, A.: A viewer-centric editor for 3d movies. IEEE Comput. Graph. Appl. 31(1), 20–35 (2011)

    Article  Google Scholar 

  12. Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., Gross, M.: Nonlinear disparity mapping for stereoscopic 3d. ACM Trans. Graph. 29(4), 75:1–75:10 (2010)

    Article  Google Scholar 

  13. Liu, C.W., Huang, T.H., Chang, M.H., Lee, K.Y., Liang, C.K., Chuang, Y.Y.: 3d cinematography principles and their applications to stereoscopic media processing. In: Proceedings of the 19th ACM International Conference on Multimedia, MM ’11, pp. 253–262. ACM Press, New York (2011)

    Chapter  Google Scholar 

  14. Mendiburu, B.: 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen. Focal Press, Waltham (2009)

    Google Scholar 

  15. Milgram, P., Krüger, M.: Adaptation effects in stereo due to on-line changes in camera configuration. In: Proc. SPIE, Stereoscopic Displays and Applications III, vol. 1669-13 (1992). SPIE Press, Bellingham

    Google Scholar 

  16. Oskam, T., Hornung, A., Bowles, H., Mitchell, K., Gross, M.: Oscam-optimized stereoscopic camera control for interactive 3d. In: SA’11 Proceedings of the 2011 SIGGRAPH Asia Conference, vol. 30, p. 189. ACM Press, New York (2011)

    Google Scholar 

  17. Reddy, M.: Perceptually optimized 3d graphics. IEEE Comput. Graph. Appl. 21(5), 68–75 (2001)

    Article  Google Scholar 

  18. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 4(3), 284–294 (2000)

    Article  Google Scholar 

  19. Shamir, A., Sorkine, O.: Visual media retargeting. In: ACM SIGGRAPH ASIA 2009 Courses, SIGGRAPH ASIA ’09, pp. 11:1–11:13. ACM Press, New York (2009)

    Google Scholar 

  20. Zilly, F., Kluger, J., Kauff, P.: Production rules for stereo acquisition. Proc. IEEE 99(4), 590–606 (2011)

    Article  Google Scholar 

  21. Zilly, F., Muller, M., Kauff, P., Schafer, R.: Stan—an assistance system for 3d productions: from bad stereo to good stereo. In: 2011 14th ITG Conference on Electronic Media Technology (CEMT), pp. 1–6. IEEE Press, New York (2011)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ugur Gudukbay, Aytek Aman and Ates Akaydin for supplying some of the 3D human models used in our scenes; Sami Arpa and the 3dios Productions for providing the 3D display equipment; and also the anonymous reviewers for their valuable suggestions. This work is supported by the Scientific and Technical Research Council of Turkey (TUBITAK, project number 110E029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ufuk Celikcan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celikcan, U., Cimen, G., Kevinc, E.B. et al. Attention-Aware Disparity Control in interactive environments. Vis Comput 29, 685–694 (2013). https://doi.org/10.1007/s00371-013-0804-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0804-6

Keywords

Navigation